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Preface

This thesis describes the results of four years of experimental research on electron

spins on quantum dots in the Quantum Transport group of Leo Kouwenhoven

and Hans Mooij. This research has been carried out in a small team, and some

excellent people have contributed to these results. At the same time, I have had

the freedom (and the privilege) to develop and prove myself on every element of

the research cycle: creating ideas for an experiment, fabricating the nanodevices,

cooling them down to 10 mK and performing measurements on them, analyzing

and publishing the results and finally presenting these results at international

conferences at beautiful locations. Looking back, I can’t help thinking of the

typical job demands of today’s ‘high-potentials’ (as spelled out in every company’s

recruiting folder): ‘solving complex problems in a creative environment with a

steep learning curve, in a team with highly intelligent and inspiring people’. The

past four years could not have been described any better.

Since this thesis is the result of a team effort, I owe much to everyone who

has contributed to it. First of all, I thank my advisor Leo Kouwenhoven for the

excellent mix of (in chronological order) guidance, freedom and responsibility I

have received during the four years. I sincerely hope your funding successes will

not stop you from using your huge knowledge in the lab (and on the football

field).

When I started my PhD, the team working on quantum dots consisted of the

Kondo heroes Silvano de Franceschi, Wilfred van der Wiel and Jeroen Elzerman.

Silvano taught me the basics of quantum dots and of dilution fridge operation.

His determination and knowledge, displayed during my first (and last) Kondo

experiment, have had a major impact on the rest of my PhD. I thank ‘Willie’ for

giving me directions on the ‘royal road’ to device fabrication. ‘Jero’ Elzerman has

been a very important person during my PhD, both scientifically and as a friend.

I have especially enjoyed our frequent discussions, which have sprouted ideas and

solutions crucial to the success of many experiments. Laurens and Lieven joined

the team about three years ago, when Wilfred and Silvano left. Laurens started

as my ‘fabrication apprentice’, but single-handedly succeeded in fabricating the

first Delft few-electron dots. He also carried on the vital Japan-link (but how
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come some Thai kids have curly blond hair?). Lieven was the quantum computing

knowledge source that we desperately needed three years ago, and has developed

to become one on quantum dots too, in a surprisingly short time. Thanks for

the many important contributions. The new guys, Frank and Ivo, will have to

carry the torch in the coming years. Ivo, I am convinced that the days and nights

we spent in the lab during Christmas holidays, without the ESR reward, will be

compensated for by many successes during your PhD. Frank, good luck in the

Overhauser fields!

Our collaboration with Prof. Tarucha and Dr. Hirayama has been of great

importance to this work. I have spent two fruitful springs in Dr. Hirayama’s

group at NTT Basic Research Labs in Atsugi (Japan), where I learned the tricks

of device fabrication from Toshiaki Hayashi and Toshimasa Fujisawa. I thank

Dr. Hirayama for this kind hospitality. Our research has benefitted enormously

from the pioneering work of Fujisawa et al., and I am very grateful for the help

and many useful discussions during the years. Furthermore, I thank T. Saku

for growing the wafers, Mike Stopa for simulations and discussions (over a beer

or two), Hashi for the ‘social activities’ and all the other people at NTT and

at Tokyo University for assistance and discussions. Especially, I would like to

acknowledge Prof. Tarucha who, in spite of his busy schedule, always took the

time to discuss the most basic issues with me. Doumo arigatou gozaimashita!

The theorists in the Basel group of Daniel Loss (especially Hansres Engel,

Guido Burkard and Vitaly Golovach) have all been very valuable for my under-

standing and the stimulation of ideas. Daniel, your input, directly and indirectly

via your students, has been of tremendous value. David DiVincenzo spent a cou-

ple of months in our group, and I would like to thank him for the many exchanges

of ideas about possible experiments and theoretical insight. Also, I have bene-

fitted greatly from discussions with the theorists in Delft, especially with Siggi

Erlingsson, Oleg Jouravlev, Miriam Blaauboer and Yuli Nazarov. Furthermore,

I thank Lingxiao Zhang and Prof. Leburton for the simulations on our devices.

Finally, I’d like to acknowledge Josh Folk and Xuedong Hu for many (email)

discussions.

Many undergraduate students have chosen to do their research project on

quantum dots: Joris Wijpkema, Jabob Greidanus, Jort Wever, Benoit Witkamp,

Ivo Vink and Wouter Naber. I’ve learned a lot from supervising you and working

with you. It’s especially nice to see that two of ‘my’ students are now doing a

PhD in our group. (While the others are stuffing their bank accounts!) Good

luck to all of you!

The Quantum Transport group offers a lot more besides quantum dot research.

Hans Mooij has managed to create a very stimulating and active environment,
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where the people really are the assets. I would like to thank all the former and

present group members for making QT such a great place. Special thanks to

my friends of the ‘Hofstad Groep’: Alexander ter Haar, Floris Zwanenburg and

Frank Meijer (not QT, still a great guy). I thank Hannes Majer for the great

brunches in Delft and the hospitality at Yale and Alberto Morpurgo for the many

one-liners from movies and the many wise words on science. Special thanks also

to my co-members of the Comité Slechte Koffie Nee (Committee ‘No to Bad

Coffee’): Jorden & Hubert. Finally, we got the coffee machine replaced by a

Kavli machine! I’m very grateful to Raymond, Bram, Leo L., Leo D., Wim &

Willem, Kees and Masscha for all the work on the electronics, the pumps, the

Helium-supply and all other measurement-related help. Yuki and Ria, thank you

both for the paperwork!

Finally, experiments in the lab do not work out without fun outside the lab.

I’ve enjoyed playing in the Monday football team (champions of last year’s Uni-

versity competition!). Furthermore, I am very grateful to all my friends for the

many good times during the last years. I sincerely hope we can meet more often

now that this thesis is finished. I thank my sister and my parents for all their

love and support. Finally, I thank Hein for inviting Liesbeth to his graduation

party and Liesbeth for showing up.

Ronald Hanson

Delft, January 2005
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Chapter 1

Introduction

1.1 Motivation

The world as we experience it in our daily lives is well described by classical theo-

ries, such as Newtonian mechanics, that were developed before the 20th century.

It came therefore as a huge surprise that, when scientists started investigating

ever smaller and smaller units of matter, they stumbled onto very weird behaviour

of small particles and light that could not be explained at all by these classical

theories.

From the initial confusion, the theory of quantum mechanics emerged in the

1920s. It ascribes to all particles a wave function, responsible for intriguing

effects such as energy quantization and interference. This quantum theory was

very successful in explaining some of the major puzzles of that time, such as

the photo-electric effect and the stability of atoms – in fact, the whole periodic

system of the elements! The theory has been used to explain phenomena in many

other fields, and has yielded well-known applications such as lasers and Magnetic

Resonance Imaging (MRI). Actually, most scientists today believe that quantum

mechanics is the true fundamental theory of nature, of which the classical theories

just represent a limiting case. How exactly the ‘macroscopic’ classical world that

we experience emerges from the ‘microscopic’ quantum world, however, is still

subject of debate [1].

These days, the computer chip industry is about to experience the same tran-

sition as science did in the early 20th century. As transistors are made smaller

and smaller, a world is entered that does not obey the classical laws of physics.

Certainly, the famous Moore’s law, which states that the number of transistors on

integrated circuits (a rough measure of computer processing power) doubles every

18 months, will not hold any longer when transistors reach the size of individual

atoms [2]. Indeed, gate leakage currents due to quantum-mechanical tunneling

1



2 Chapter 1. Introduction

already pose one of the most difficult hurdles for further decreasing the transistor

size.

Rather than viewing the quantum-mechanical behaviour as a problem, we

might also ask ourselves whether it is possible to actually use quantum mechanics

for computing. One approach is to integrate a quantum property in a classical

computing scheme. For example, the field of spintronics aims to use the spin

degree of freedom of electrons as a carrier of classical information (bits) [3].

Alternatively, we might try to build a computer that exploits the unique features

of quantum mechanics to perform computations that are not possible classically:

a true quantum computer.

The research described in this thesis constitutes a first step towards a small-

scale quantum computer where the spins of electrons serve as quantum bits, the

basic building blocks of a quantum computer. In the next sections, the concept

of quantum computing is explained, and the basic ingredients for implementing

quantum bits with electron spins confined in quantum dots are outlined.

1.2 Quantum computing

In 1982, Richard Feynman speculated [4] that quantum systems might be able to

perform certain tasks more efficiently than would be possible in classical systems.

Important theoretical breakthroughs in the 1980s and 1990s have led to a realistic

idea of what a quantum computer should look like. Before we continue discussing

the quantum computer, we need to understand two important concepts from

quantum mechanics: superpositions and entanglement.

Unlike a classical two-level system, which is always either in state 0 or in state

1, a quantum two-level system can be in an arbitrary superposition of states |0〉
and |1〉: α|0〉+β|1〉, where |α|2+ |β| 2 = 1. The evolution of this system is deter-

ministic, as it is governed by a first-order differential equation – the Schrödinger

equation. However, coupling this quantum system to a measurement appara-

tus forces it into one of the possible measurement eigenstates in an apparently

non-deterministic way: the particular measurement outcome is random, only the

probability for each outcome can be determined [5]. In the case of the above

superposition state, the probability for measuring |0〉 is |α|2, and for |1〉 is |β|2.
The question of what exactly constitutes a measurement, which seems to be

closely related to the transition from quantum to classical behaviour, is not fully

understood [6].

The second property of quantum mechanics that is needed is one which has

sprouted controversy for many years: entanglement. By interacting with each
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other, two quantum two-level systems can become entangled, which means that

we can not fully describe one system independently of the other. For example,

the state (|01〉− |10〉)/√2 gives a complete description of the whole system, but

the two subsystems do not have a definite state. Due to this strong connection

between the two systems, a measurement made on one, which forces it into one

of the two states |0〉 or |1〉, immediately influences the state of the other, even

though it may be arbitrarily far away. People have questioned whether it is not

just a lack of our knowledge of some ‘hidden variable’ that hinders the prediction

of a measurement outcome. However, measurements on so-called EPR pairs of

photons (named after a landmark thought experiment by Einstein, Podolsky and

Rosen [7]) have clearly shown that the non-local correlations between the photons

are significantly larger than permitted by any local hidden-variable theory [8, 9].

Thus, entanglement is real, and constitutes one of the essential resources for

quantum computing.

Using the concepts of superposition and entanglement, we now give a simpli-

fied view of the difference between a classical and a quantum computer in Fig. 1.1.

A one-bit classical computer is a machine that takes one input value, 0 or 1, and

computes the corresponding output value, f(0) or f(1). A quantum computer

with one quantum bit (or ‘qubit’) could take as an input value a superposition of

|0〉 and |1〉, and due to the linearity of quantum mechanics the output would be a

superposition of F |0〉 and F |1〉. So, in a sense it has performed two calculations

f f(0)0

f f(1)1

F10 + 10 +F F

f f(00)00

f f(01)01

F
0100 +

0100 +F F

f f(10)10

f f(11)11

1110 ++
10+F 11F+

a b1 (qu)bit 2 (qu)bits

Figure 1.1: Difference between a classical and a quantum computer. (a) To determine
the function f for the two possible input states 0 and 1, a one-bit classical computer
needs to evaluate the function twice, once for every input state. In contrast, a one-
qubit quantum computer can have a superposition of |0〉 and |1〉 as an input, to end
up in a superposition of the two output values, F |0〉 and F |1〉. It has taken only half
the number of steps as its classical counterpart. (b) Similarly, a two-qubit quantum
computer needs only a quarter of the number of steps that are required classically.
The computing power of a quantum computer scales exponentially with the number of
qubits, for a classical computer the scaling is only linear.
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in a single step. For a two-qubit system, the gain becomes even more significant:

now the input can be a superposition of four states, so the quantum computer

can perform four calculations in one step. The operation on many input states

simultaneously is termed ‘quantum parallelism’ and is at the heart of quantum

computing. In fact, it can be proved [10] that the computing power of a quantum

computer scales exponentially with the number of qubits, whereas this scaling is

only linear for a classical computer.

It might appear that a fundamental problem has been overlooked: accord-

ing to quantum mechanics, a superposition of possible measurement outcomes

can only exist before it is measured, and the measurement gives only one actual

outcome. The exponential computing power thus appears inaccessible. How-

ever, by using carefully tailored quantum algorithms, an exponential speed-up

can be achieved for some problems such as factoring integers [11] or simulating a

quantum system [12]. For other tasks, such as searching a database, a quadratic

speed-up is possible [13]. Using such quantum algorithms, a quantum computer

can indeed be far more efficient than a classical one, performing tasks that a clas-

sical computer could not possibly finish before the sun will burn up the earth. As

thinking about quantum algorithms has only barely begun, it is not unreasonable

to assume that more applications of quantum computing will be discovered in the

future.

Another fundamental issue is the interaction of the quantum system with the

(uncontrolled) environment, which inevitably disturbs the desired quantum evo-

lution. This process, known as ‘decoherence’, results in errors in the computation.

Additional errors are introduced by imperfections in the quantum operations that

are applied. All these errors propagate, and after some time the state of the com-

puter will be significantly different from what it should be. It would seem that

this prohibits any long computations, making it impossible for a quantum com-

puter to use its exponential power for a non-trivial task. Fortunately, it has been

shown that methods to detect and correct any errors exist [14, 15], keeping the

computation on track. Of course, such methods only help if the error rate is

small enough, since otherwise the correction operations create more errors than

they remove. This sets a so-called ‘accuracy threshold’ [16, 17], which is currently

believed to be around 10−4. If the error per quantum operation is smaller than

this threshold, any errors can be corrected and an arbitrarily long computation

is possible.

Due to the development of quantum algorithms and error correction, quantum

computation is feasible from a theoretical point of view. The challenge is building

an actual quantum computer with a sufficiently large number of coupled qubits.

Probably, more than a hundred qubits will be required for useful computations,



1.3 Electron spin as a quantum bit 5

but a system of about thirty qubits might already be able to perform valuable

simulations of quantum systems.

1.3 Electron spin as a quantum bit

Any quantum two-level system can in principle function as a qubit, but for a

scalable quantum computer a number of additional features are required [18].

Essentially, we have to reconcile the conflicting demands of good access to the

quantum system (in order to perform fast and reliable operations or measure-

ments) with sufficient isolation from the environment (for long coherence times).

Current state-of-the-art is a seven-bit quantum computer, built up from the nu-

clear spins of molecules in a liquid solution. In this system, Shor’s factoring

algorithm has been demonstrated on the number 15 using nuclear magnetic res-

onance (NMR) techniques [19]. Practical limitations do not allow the NMR

approach to be scaled up to more than about ten qubits. Therefore, many other

implementations are currently being studied (a frequently updated overview of

the progress on the different implementations can be found at Ref. [20]).

Typically, microscopic systems such as atoms or ions have good coherence

properties, but are not easily accessible or scalable; on the other hand, larger

systems such as solid-state devices can be accessed and scaled more easily, but

often lack a long coherence time. A solid-state device with a long coherence time

would represent the best of both worlds.

Precisely such a system was proposed by Loss and DiVincenzo [21] in 1997:

the spin orientation of a single electron trapped in a semiconductor quantum dot.

We outline the basic ingredients of this proposal below.

An electron spin can point ‘up’ or ‘down’ with respect to an external magnetic

field. These eigenstates, |↑〉 and |↓〉, correspond to the two basis states of the

qubit.

The electron is trapped on a quantum dot, which is basically a small electri-

cally defined box with a discrete energy spectrum. The quantum dots that we use

are defined by metal ‘gate’ electrodes on top of a semiconductor (GaAs/AlGaAs)

heterostructure (see Fig. 1.2). At the interface between GaAs and AlGaAs, con-

duction band electrons accumulate that can only move in the lateral direction.

Applying negative voltages to the gates locally depletes this two-dimensional elec-

tron gas underneath. The resulting gated quantum dots are very controllable and

versatile systems, which can be manipulated and probed electrically. With the

external magnetic field, B, we can tune the Zeeman splitting, ∆EZ = gµBB,

where g ≈ −0.44 is the g-factor of GaAs, and µB = 9.27× 10−24 J/T is the Bohr
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ee e e

2DEG back gatehigh-g layer

B

Bac

Figure 1.2: Schematic picture of the electron spin quantum computer as proposed by
Loss and DiVincenzo [21]. The array of metal electrodes on top of a semiconductor
heterostructure, containing a two-dimensional electron gas (2DEG) below the surface,
defines a number of quantum dots (dotted circles), each holding a single electron spin
(arrow). A magnetic field, B, induces a Zeeman splitting between the spin-up and spin-
down states of each electron spin. The spin state is controlled either via an oscillating
magnetic field, Bac (on resonance with the Zeeman splitting), or via an oscillating
electric field created with the back gates, which can pull the electron wavefunction into
a layer with a large g-factor. Coupling between two spins is controlled by changing the
voltage on the electrodes between the two dots. (Adapted from Ref. [21].)

magneton. In this way, we can control the energy levels of the qubit.

To perform single-qubit operations, we can apply a microwave magnetic field

on resonance with the Zeeman splitting, i.e. with a frequency f = ∆EZ/h, where

h is Planck’s constant. The oscillating magnetic component perpendicular to the

static magnetic field B results in a spin nutation. By applying the oscillating

field for a fixed duration, a superposition of |↑〉 and |↓〉 can be created. This

magnetic technique is known as electron spin resonance (ESR).

Two-qubit operations can be carried out purely electrically, by varying the

gate voltages that control the potential barrier between two dots. It has been

shown [21] that the system of two electron spins on neighboring dots, S1 and S2,

coupled via a tunnel barrier, can be mapped onto the Heisenberg exchange Hamil-

tonian H = J �S1 · �S2. The strength of this interaction, J , depends on the wave

function overlap of the electrons and can be controlled electrically. By turning

the two-spin interaction on for a certain well-defined time, the two electron spins

can be swapped or even entangled. With combinations of arbitrary single-spin ro-

tations and the two-spin interaction, any quantum gate can be implemented [21].

A last crucial ingredient is a method to read out the state of the spin qubit.

This implies measuring the spin orientation of a single electron – a daunting task,
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since the electron spin magnetic moment is exceedingly small (equal to the Bohr

magneton µB). Therefore, an indirect spin measurement is proposed [21]. First

the spin orientation of the electron is correlated with its position, via ‘spin-to-

charge conversion’. Then an electrometer is used to measure the position of the

charge, thereby revealing its spin. In this way, the problem of measuring the spin

orientation has been replaced by the much easier measurement of charge.

The ideas of Loss and DiVincenzo have led to an enormous research effort

aiming at implementing the different parts of the proposal. Currently, among

the most active players in this rapidly moving field are the groups of prof. S.

Tarucha (Tokyo University, Japan), dr. T. Fujisawa and dr. Y. Hirayama (NTT

Basic Research Labs, Japan), Prof. J.P. Kotthaus (LUM München, Germany),

prof. C.M. Marcus and Prof. R. Westervelt (Harvard University, USA), prof.

M.A Kastner (MIT, USA), and prof. D. Goldhaber-Gordon (Stanford University,

USA).

Finally, it should be stressed that our efforts to create a spin qubit are not

purely application-driven. If we have the ability to control and read out a single

electron spin, we are in a unique position to study the interaction of the spin

with its environment. This may lead to a better understanding of decoherence,

and will also allow us to study the semiconductor environment using the spin as

a probe.

1.4 Outline of this thesis

This thesis describes a series of experiments aimed at understanding and con-

trolling single electron spins confined in a semiconductor quantum dot, with the

long-term goal of creating of a small-scale quantum computer.

We start with explaining the basic theory of quantum dots and the mea-

surement techniques applied in this work. In chapter 3, the hardware for the

experiments on electron spins is developed: a double quantum dot circuit with

a voltage-tunable number of electrons, with an integrated charge detector. We

show that using this charge detector, we can monitor single-electron tunneling in

real time.

In the next two chapters, 4 and 5, we investigate the spin states of a one-

and a two-electron quantum dot by measurements of electron transport through

the dot. In chapter 4, we use an in-plane magnetic field to directly detect the

Zeeman splitting of a single electron. Furthermore, we find a lower bound on

the spin relaxation time of 50 µs, by using fast voltage pulses. In chapter 5, we

demonstrate that a few-electron dot can be operated as an electrically tunable
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bipolar spin filter.

In chapters 6 to 8, we use the charge detector for measurements in the regime

of very weak dot-lead coupling, where we can resolve single-electron tunnel events

in real time. First, a novel method is presented for finding the relevant dot

parameters in this regime (chapter 6). Then, we demonstrate one of the key

ingredients for a quantum computer: single-shot read-out of the spin states.

To convert the spin information to charge information, we have exploited the

spin-dependent energy (chapter 7), and spin-dependent tunnel rates (chapter 8),

achieving a measurement visibility of more than 80%. Both for a single spin

and for the two-electron spin states, we find that the relaxation can be very slow

(relaxation times up to milliseconds). We find a strong magnetic field dependence

that hints at spin-orbit interaction as the dominant relaxation mechanism.

The current status of the field and the remaining issues are discussed in the

concluding chapter. Also, detailed measurement schemes for single-spin rota-

tions and the two-spin swap operation are proposed. Finally, the possibility of

performing a test of Bell’s inequalities using present-day techniques is discussed.
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Chapter 2

Theory, device fabrication and

measurement techniques

2.1 Quantum dots

A quantum dot is simply a small box that can be filled with electrons. The box is

coupled via tunnel barriers to a source and drain reservoir, with which particles

can be exchanged (see Fig. 2.1). By attaching current and voltage probes to these

reservoirs, we can measure the electronic properties of the dot. The dot is also

coupled capacitively to one or more ‘gate’ electrodes, which can be used to tune

the electrostatic potential of the dot with respect to the reservoirs. When the

size of the dot is comparable to the wavelength of the electrons that occupy it,

the system exhibits a discrete energy spectrum, resembling that of an atom. As

a result, quantum dots behave in many ways as artificial atoms [1].

Because a quantum dot is such a general kind of system, there exist quantum

VgVSD I

SOURCE DRAIN

GATE

e

DOT

Figure 2.1: Schematic picture of a quantum dot in a lateral geometry. The quantum
dot (represented by a disk) is connected to source and drain contacts via tunnel barriers,
allowing the current through the device, I, to be measured in response to a bias voltage,
VSD and a gate voltage, Vg.

11



12 Chapter 2. Theory, device fabrication and measurement techniques

dots of many different sizes and materials: for instance single molecules trapped

between electrodes, metallic or superconducting nanoparticles, self-assembled

quantum dots, semiconductor lateral or vertical dots, and also semiconducting

nanowires or carbon nanotubes between closely spaced electrodes. In this thesis,

we focus on lateral (gated) semiconductor quantum dots [2]. These lateral devices

allow all relevant parameters to be controlled in situ.

In this thesis, two different ways are used to probe the behavior of electrons

on a quantum dot. We can measure the current due to transport of electrons

through the dot, and we can use an electrometer to detect changes in the number

of electrons on the dot. These experiments are conveniently understood using

the constant interaction (CI) model [2].

2.1.1 Constant Interaction model

The CI model makes two important assumptions. First, the Coulomb interac-

tions among electrons in the dot, and between electrons in the dot and those in

the environment, are parameterized by a single, constant capacitance, C. This

capacitance can be thought of as the sum of the capacitances between the dot

and the source, CS, the drain, CD, and the gate, Cg: C = CS +CD +Cg. Second,

the discrete energy spectrum can be described independently of the number of

electrons on the dot. Under these assumptions the total energy of a N -electron

dot in the ground state with the source-drain voltage, VSD, applied to the source

(and the drain grounded), is given by

U(N) =
[−|e|(N − N0) + CSVSD + CgVg]

2

2C
+

N∑
n=1

En(B) (2.1)

where −|e| is the electron charge and N0 the number of electrons in the dot at

zero gate voltage, which compensates the positive background charge originating

from the donors in the heterostructure. The terms CSVSD and CgVg can change

continuously and represent the charge on the dot that is induced by the bias

voltage (through the capacitance CS) and by the gate voltage Vg (through the

capacitance Cg), respectively. The last term of Eq. 2.1 is a sum over the occupied

single-particle energy levels En(B), which are separated by an energy ∆En =

En −En−1. These energy levels depend on the characteristics of the confinement

potential. Note that, within the CI model, only these single-particle states depend

on magnetic field, B.

To describe transport experiments, it is often more convenient to use the

electrochemical potential. The electrochemical potential of the dot is by definition
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Figure 2.2: Schematic diagrams of the electrochemical potential of the quantum dot
for different electron numbers. (a) No level falls within the bias window between µS

and µD, so the electron number is fixed at N − 1 due to Coulomb blockade. (b) The
µ(N) level is aligned, so the number of electrons can alternate between N and N − 1,
resulting in a single-electron tunneling current. The magnitude of the current depends
on the tunnel rate between the dot and the reservoir on the left, ΓL, and on the right,
ΓR. (c) Both the ground-state transition between N − 1 and N electrons (black line),
as well as the transition to an N -electron excited state (gray line) fall within the bias
window and can thus be used for transport (though not at the same time, due to
Coulomb blockade). This results in a current that is different from the situation in (b).
(d) The bias window is so large that the number of electrons can alternate between
N − 1, N and N + 1, i.e. two electrons can tunnel onto the dot at the same time.

the energy required for adding the Nth electron to the dot:

µ(N) ≡ U(N) − U(N − 1) =

= (N − N0 − 1

2
)EC − EC

|e| (CSVSD + CgVg) + EN (2.2)

where EC = e2/C is the charging energy. This expression denotes the transition

between the N -electron ground state and N − 1-electron ground state. To avoid

confusion when also excited states play a role, we will sometimes use a more

explicit notation: the electrochemical potential for the transition between the

N − 1-electron state |a〉 and the N -electron state |b〉 is then denoted as µa↔b,

and is defined as Ub − Ua.

The electrochemical potential for the transitions between ground states with a

different electron number N is shown in Fig. 2.2a. The discrete levels are spaced

by the so-called addition energy:

Eadd(N) = µ(N + 1) − µ(N) = EC + ∆E. (2.3)

The addition energy consists of a purely electrostatic part, the charging energy

EC , plus the energy spacing between two discrete quantum levels, ∆E. Note
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that ∆E can be zero, when two consecutive electrons are added to the same

spin-degenerate level.

Of course, for transport to occur, energy conservation needs to be satisfied.

This is the case when an electrochemical potential level falls within the ‘bias

window’ between the electrochemical potential (Fermi energy) of the source (µS)

and the drain (µD), i.e. µS ≥ µ ≥ µD with −|e|VSD = µS − µD. Only then can

an electron tunnel from the source onto the dot, and then tunnel off to the drain

without losing or gaining energy. The important point to realize is that since the

dot is very small, it has a very small capacitance and therefore a large charging

energy – for typical dots EC ≈ a few meV. If the electrochemical potential levels

are as shown in Fig. 2.2a, this energy is not available (at low temperatures and

small bias voltage). So, the number of electrons on the dot remains fixed and no

current flows through the dot. This is known as Coulomb blockade.

The Coulomb blockade can be lifted by changing the voltage applied to the

gate electrode. This changes the electrostatic potential of the dot with respect

to that of the reservoirs, shifting the whole ‘ladder’ of electrochemical potential

levels up or down. When a level falls within the bias window, the current through

the device is switched on. In Fig. 2.2b µ(N) is aligned, so the electron number

alternates between N − 1 and N . This means that the Nth electron can tunnel

onto the dot from the source, but only after it tunnels off to the drain can another

electron come onto the dot again from the source. This cycle is known as single-

electron tunneling.

By sweeping the gate voltage and measuring the current, we obtain a trace
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Figure 2.3: Transport through a quantum dot. (a) Coulomb peaks in current ver-
sus gate voltage in the linear-response regime. (b) Coulomb diamonds in differential
conductance, dI/dVSD, versus VSD and Vg, up to large bias. The edges of the diamond-
shaped regions (black) correspond to the onset of current. Diagonal lines emanating
from the diamonds (gray) indicate the onset of transport through excited states.
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as shown in Fig. 2.3a. At the positions of the peaks, an electrochemical potential

level is aligned with the source and drain and a single-electron tunneling current

flows. In the valleys between the peaks, the number of electrons on the dot is

fixed due to Coulomb blockade. By tuning the gate voltage from one valley to

the next one, the number of electrons on the dot can be precisely controlled.

The distance between the peaks corresponds to EC +∆E, and can therefore give

information about the energy spectrum of the dot.

A second way to lift Coulomb blockade is by changing the source-drain volt-

age, VSD (see Fig. 2.2c). (In general, we change the electrochemical potential of

only one of the reservoirs, and keeping the other one fixed.) This increases the

bias window and also ‘drags’ the electrochemical potential of the dot along, due

to the capacitive coupling to the source. Again, a current can flow only when

an electrochemical potential level falls within the bias window. When VSD is in-

creased so much that both the ground state as well as an excited state transition

fall within the bias window, there are two paths available for electrons tunneling

through the dot. In general, this will lead to a change in the current, enabling

us to perform energy spectroscopy of the excited states. How exactly the current

changes depends on the tunnel rates of the two paths [3].

Usually, we measure the current or differential conductance (the derivative

of the current with respect to the source-drain bias) while sweeping the bias

voltage, for a series of different values of the gate voltage. Such a measurement is

shown schematically in Fig. 2.3b. Inside the diamond-shaped region, the number

of electrons is fixed due to Coulomb blockade, and no current flows. Outside

the diamonds, Coulomb blockade is lifted and single-electron tunneling can take

place (or for larger bias voltages even double-electron tunneling is possible, see

Fig. 2.2d). Excited states are revealed as changes in the current, i.e. as peaks or

dips in the differential conductance. From such a ‘Coulomb diamond’ the energy

of excited states as well as the charging energy can be read off directly.

The simple model described above explains successfully how quantization of

charge and energy leads to effects like Coulomb blockade and Coulomb oscilla-

tions. Nevertheless, it is too simplified in many respects. For instance, the model

considers only first-order tunneling processes, in which an electron tunnels first

from one reservoir onto the dot, and then from the dot to the other reservoir. But

when the tunnel rate between the dot and the leads, Γ, is increased, higher-order

tunneling via virtual intermediate states becomes important. Such processes are

known as ‘cotunneling’. Furthermore, the simple model does not take into ac-

count the spin of the electrons, thereby excluding for instance exchange effects.
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2.1.2 Spin configurations in few-electron quantum dots

The fact that electrons carry spin determines the electronic states of the quantum

dot, in quite the same way as it does in real atoms. In fact, a group of physicists

that pioneered measurements on few-electron (vertical) dots, have established a

periodic system of elements in two dimensions [1]. In the simplest case – a dot

containing just a single electron (artificial Hydrogen)– spin leads to a splitting

of all orbitals into Zeeman doublets, with the ground state corresponding to the

electron spin pointing up (↑), i.e. parallel to the magnetic field, and the excited

state to the spin pointing down (↓), i.e. antiparallel to the magnetic field. The

difference between the corresponding energy levels E↑ and E↓ is given by the

Zeeman energy, ∆EZ = gµBB, which is approximately 25 µeV/T in GaAs.

For two electrons in a quantum dot (artificial Helium), the situation is more

complicated. For a Hamiltonian without spin-orbit coupling terms (which is true

to a good approximation for our system), the two-electron state is the product

of the orbital and spin state. Since electrons are fermions, the total two-electron

state has to be anti-symmetric under exchange of the two particles. Therefore,

if the orbital part is symmetric, the spin state must be anti-symmetric, and if

the spin part is anti-symmetric, the orbital state must be symmetric. The anti-

symmetric two-spin state is the spin singlet |S 〉:

|S 〉 =
|↑↓〉 − |↓↑〉√

2
(2.4)

which has total spin S = 0. The symmetric two-spin states are the so-called spin

triplets (|T+ 〉, |T0 〉 and |T− 〉):

|T+ 〉 = |↑↑〉 |T0 〉 =
|↑↓〉 + |↓↑〉√

2
|T− 〉 = |↓↓〉 (2.5)

which have total spin S = 1 and a quantum number ms (corresponding to the

spin z-component) of 1, 0, and -1, respectively. In a finite magnetic field, the

three triplet states are split by the Zeeman splitting, ∆EZ .

Even at zero magnetic field, the energy of the two-electron system depends

on its spin configuration, through the requirement of anti-symmetry of the total

state. If we consider just the two lowest orbitals, ε0 and ε1, then there are six

possibilities to fill these with two electrons (Fig. 2.4). At zero magnetic field [4],

the two-electron ground state is always the spin singlet with both electrons on

the lowest orbital (Fig. 2.4a), and the lowest excited states are then the three

spin triplets (Fig. 2.4b–d). The energy gain of T0 with respect to the excited spin

singlet S1 (Fig. 2.4e) is known as the exchange energy. It essentially results from

the fact that electrons in the triplet states tend to avoid each other, reducing
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Figure 2.4: Schematic energy diagrams depicting the spin states of two electrons
occupying two spin degenerate single-particle levels (ε0 and ε1). (a) Spin singlet, which
is the ground state at zero magnetic field. (b)–(d) Lowest three spin triplet states,
|T+ 〉, |T0 〉 and |T− 〉, which have total spin S = 1 and quantum number ms = +1, 0
and -1, respectively. In finite magnetic field, the triplet states are split by the Zeeman
energy. (e) Excited spin singlet state, S1. The energy difference between S1 and the
triplet state T0 is the exchange energy. (f) Highest excited spin singlet state, S2.

their mutual Coulomb energy. As the Coulomb interaction is very strong, the

exchange energy can be quite large (a few 100 µeV) [5].

For more than two electrons, the spin states can be much more complicated.

However, in some cases and for certain magnetic field regimes they might be well

approximated by a one-electron Zeeman doublet (when N is odd) or by two-

electron singlet or triplet states (when N is even). But there are still differences

– for instance, if N > 2 the ground state at zero field can be a spin triplet, due

to Hund’s rule [6].

The eigenstates of a two-electron double dot (artificial Hydrogen molecule)

are also spin singlets and triplets. We can again use the diagrams in Fig. 2.4, but

now the single-particle eigenstates ε0 and ε1 represent the symmetric and anti-

symmetric combination of the lowest orbital on each of the two dots, respectively.

Due to tunneling between the dots, with tunneling matrix element t, ε0 (the

‘bonding state’) and ε1 (the ‘anti-bonding state’) are split by an energy 2t. By

filling the two states with two electrons, we again get a spin singlet ground state

and a triplet first excited state (at zero field). However, the singlet ground state

is not purely S (Fig. 2.4a), but also contains a small admixture of the excited

singlet S2 (Fig. 2.4f). The admixture of S2 depends on the competition between

inter-dot tunneling and the Coulomb repulsion, and serves to lower the Coulomb

energy by reducing the double occupancy of the dots [7].

If we focus only on the singlet ground state and the triplet first excited states,

then we can describe the two spins �S1 and �S2 by the Heisenberg Hamiltonian, H =
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J �S1 · �S2. Due to this mapping procedure, J is now defined as the energy difference

between the triplet state T0 and the singlet ground state, which depends on the

details of the double dot orbital states. From a Hund-Mulliken calculation [8],

J is approximately given by 4t2/U + V , where U is the on-site charging energy

and V includes the effect of the long-range Coulomb interaction. By changing the

overlap of the wave functions of the two electrons, we can change t and therefore J .

Thus, control of the inter-dot tunnel barrier would allow us to perform operations

such as swapping or entangling two spins.

We finally remark on the orbital part of the electron wave function in the

dot. The confinement potential of semiconductor quantum dots is to a good

approximation a parabolic well. Indeed, experiments on vertical dots have shown

excellent agreement between the orbital wave functions in the dots and the single-

particle Fock-Darwin states [1]. The Fock-Darwin states can therefore be very

helpful in explaining effects that arise from the spatial form of the electron wave

function in the dot (e.g. the fact that different orbitals can have a very different

tunnel coupling to the reservoir).

2.2 Device fabrication

Fabrication of lateral gated quantum dots starts with a semiconductor heterostruc-

ture, a sandwich of different layers of semiconducting material (see Fig. 2.5a).

These layers, in our case GaAs and AlGaAs, are grown on top of each other us-

ing molecular beam epitaxy (MBE), resulting in very clean crystals. By doping

the n-AlGaAs layer with Si, free electrons are introduced. These accumulate at

the interface between GaAs and AlGaAs, typically 100 nm below the surface,

forming a two-dimensional electron gas (2DEG) – a thin (∼10 nm) sheet of elec-

trons that can only move along the interface. The 2DEG can have a high mobility

and relatively low electron density (typically 105 − 106 cm2/Vs and ∼ 3 × 1015

m−2, respectively). The low electron density results in a large Fermi wavelength

(∼ 40 nm) and a large screening length, which allows us to locally deplete the

2DEG with an electric field. This electric field is created by applying (negative)

voltages to metal gate electrodes on top of the heterostructure (Fig. 2.5b).

We fabricate these electrodes using electron-beam lithography. First, we spin

a layer of organic resists (typically poly-methyl-methacrylate, PMMA) on the

heterostructure surface (Fig. 2.6a). Then the gate pattern is defined by writing

with a focused electron beam in the electron-sensitive resist. This locally breaks

up the polymer chains, so that the exposed parts can be removed by a developer

(solution of methyl isobutyl ketone, MIBK, and iso-propyl alcohol, IPA), see
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Figure 2.5: Confining electrons in a semiconductor. (a) Semiconductor heterostruc-
ture containing a 2DEG (indicated in white) approximately 100 nm below the surface,
at the interface between GaAs and AlGaAs. The electrons in the 2DEG result from
Si donors in the n-AlGaAs layer. (The thickness of the different layers is not to scale.)
(b) By applying negative voltages to the metal electrodes on the surface of the het-
erostructure, the underlying 2DEG can be locally depleted. In this way, electrons can
be confined to one or even zero dimensions.

Fig. 2.6b. Note that there is some undercut of the PMMA layer. This undercut

is caused by the significant electron scattering at the interface between GaAs and

PMMA during the electron beam exposure.

In the next step (Fig. 2.6c), metal is evaporated, which only makes contact to

the heterostructure at the places where the resist has been exposed and removed.

In our devices, the metal gates consist of a thin (5 nm) ‘sticking’ layer of titanium,

with a 30 nm layer of gold on top. The last step is the removal of the remaining

resist by acetone (Fig. 2.6d). In this process, the metal on top of the resist is

removed as well, the so-called ‘lift-off’. The lift-off process is facilitated by the

undercut in the resist layer. Now metal electrodes are left at the places that were

resist

heterostructure

e-beam after
development

metal
evaporation after

lift-off

a b c d

Figure 2.6: Fabrication of metal electrodes on the surface of the heterostructure. (a)
Writing a pattern in the resist layer with an electron beam. (b) After developing, the
resist has been locally removed. (c) Evaporating metal. (d) After lift-off, a metal
electrode remains.
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Figure 2.7: Lateral quantum dot device defined by metal surface electrodes. (a)
Schematic view of a device. Negative voltages applied to metal gate electrodes (dark
gray) lead to depleted regions (white) in the 2DEG (light gray). Ohmic contacts (light
gray columns) enable bonding wires (not shown) to make electrical contact to the 2DEG
reservoirs. (b) Scanning electron microscope image of an actual device, showing the
gate electrodes (light gray) on top of the surface (dark gray). The two white dots
indicate two quantum dots, connected via tunable tunnel barriers to a source (S) and
drain (D) reservoir, indicated in white. The two upper gates can be used to create
two quantum point contacts, in order to detect changes in the number of electrons on
the dot, as will be explained in chapter 3 (Device fabricated by Laurens Willems van
Beveren and Ronald Hanson at NTT Basic Research Labs.)

exposed to the electron beam. The electron beam can accurately write with a

resolution of about 5 nm, but in practice the minimal width of a gate electrode

is about 40 nm, limited by the development and the lift-off step.

Electron-beam lithography allows very complicated gate structures to be made

(Fig. 2.7). By applying negative voltages to the gates, the 2DEG is locally de-

pleted, creating one or more small islands that are isolated from the large 2DEG

reservoirs. These islands are the quantum dots. In order to probe them, we need

to make electrical contact to the reservoirs. For this, we evaporate AuGeNi on

the contact pads and anneal at ∼ 400 degrees Celsius for 60 seconds. This forms

ohmic contacts with a resistance of about 1 kOhm that connect the 2DEG source

and drain reservoirs electrically to metal bonding pads on the surface. Metal

wires bonded to these pads run toward the current or voltage probes, enabling

us to perform transport measurements.
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2.3 Measurement setup

Dilution refrigerator

To resolve small energies such as the Zeeman splitting, the sample has to be

cooled down to temperatures well below a Kelvin. We use an Oxford Kelvinox

300 dilution refrigerator, which has a base temperature of about 10 mK, and

a cooling power in excess of 300 µW (at 100 mK). The sample holder is con-

nected to a cold finger and placed in a copper can (36 mm inner diameter) in

the bore of a superconducting magnet that can apply a magnetic field up to 16 T.

Measurement electronics

A typical measurement involves applying a source-drain voltage over (a part of)

the device, and measuring the resulting current as a function of the voltages

applied to the gates. The electrical circuits for the voltage-biased current mea-

surement and for applying the gate voltages are shown in Fig. 2.8 and Fig. 2.9,

respectively. The most important parts of the measurement electronics – i.e.

the current-to-voltage (I-V ) converter, isolation amplifier, voltage source and

digital-to-analog convertors (DACs) – were all built by Raymond Schouten at

Delft University. The underlying principle of the setup is to isolate the sample

electrically from the measurement electronics. This is achieved via optical iso-

lation at both sides of the measurement chain, i.e. in the voltage source, the

isolation amplifier, as well as the DACs. In all these units, the electrical signal

passes through analog optocouplers, which first convert it to an optical signal

using an LED, and then convert the optical signal back using a photodiode. In

this way, there is no galvanic connection between the two sides. In addition, all

circuitry at the sample side is analog (even the DACs have no clock circuits or

microprocessors), battery-powered, and uses a single clean ground (connected to

the metal parts of the fridge) which is separated from the ground used by the

‘dirty’ electronics. All these features help to eliminate ground loops and reduce

interference on the measurement signal.

Measurements are controlled by a computer running LabView. It sends com-

mands via a fiber link to two DAC-boxes, each containing 8 digital-to-analog

convertors, and powered by a specially shielded transformer. Most of the DACs

are used to generate the voltages applied to the gate electrodes (typically be-

tween 0 and -5 V). One of the DACs controls the source-drain voltage for the

device. The output voltage of this DAC (typically between +5 and -5V) is sent

to a voltage source, which attenuates the signal by a factor 10, 102, 103 or 104

and provides optical isolation. The attenuated voltage is then applied to one of

the ohmic contacts connected to the source reservoir of the device.
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The resulting current coming from the drain reservoir is fed to a low-noise I-V

converter. In this thesis we use two types, depending on the desired bandwidth.

The first one (used in chapters 3, 4 and 5), is designed for low-frequency mea-

surements. It has a bandwidth of about 1 kHz, and a noise floor of ∼ 5 fA/Hz1/2.

The feedback resistance can be set to 10 MΩ, 100 MΩ or 1GΩ, with an input

resistance that is a factor 103 or 104 smaller (for the ‘low noise’ or ‘low input

resistance’ setting, respectively). The faster I-V converter, used in chapters 3

(section 3.7), 6, 7 and 8 has a bandwidth of about 150 kHz, and a current noise

of ∼ 1 pA/Hz1/2 at 100 kHz. The feedback resistance is 10 MΩ, corresponding

to an input resistance of 1.3 kΩ.

The signal from the I-V converter is then sent to an isolation amplifier, to

provide optical isolation and possibly gain. Again we can choose a low-frequency

version (up to ∼ 1 kHz) or a high-frequency one (up to ∼ 300 kHz). The voltage

from the isolation amplifier is finally measured by a digital multimeter (Keithley

2700) and sent to the computer via GPIB interface. Alternatively, we can use a

lock-in amplifier (Stanford EG&G 5210) if the signal to be measured is periodic,

or an ADwin Gold module for very fast measurements (up to 2.2 × 106 14-bit

samples per second).

Measurement wires

To make contact to the sample, 2 × 12 twisted pairs of wires run from two

connector boxes at room temperature all the way down to the ‘cold finger’ at base

temperature. The diameter and material of these wires is chosen to minimize the

heat load on the mixing chamber. From room temperature to 1 Kelvin, 2×9 pairs

consist of manganine wires (100 µm diameter), and 2×3 pairs of copper wires (90

µm diameter). From 1 Kelvin to the mixing chamber, superconducting ‘Niomax’

wires (50 µm diameter) are used. From the mixing chamber to the bottom of

the cold finger, where thermal conductivity is no longer a constraint, we have

standard copper wires. At base temperature, one wire of each twisted pair is

connected to ‘cold ground’ (i.e. the cold finger), which is electrically connected

to clean ground via the metal parts of the fridge.

All wires are thermally anchored to the fridge, by carefully wrapping them

around copper posts, at several temperature stages (4 K, 1 K, ∼ 100 mK and

∼ 10 mK). At room temperature, the resistance of the wires is about 250 Ω or

150 Ω for the manganine or copper wires, respectively. At low temperature it

is about 50 Ω. The wires have various parasitic capacitances to their twisted

partner and to ground, as indicated in Fig. 2.8 and Fig. 2.9.
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Filtering

The wires connect the device to the measurement electronics at room temper-

ature, so they have to be carefully filtered to avoid that the electrons in the

sample heat up due to spurious noise and interference. Several filtering stages

are required for different frequency ranges (see Fig. 2.8 and Fig. 2.9). In the

connector box at room temperature, all wires are connected to ground via 0.22

nF ‘feedthrough capacitors’. At base temperature, all signal wires run through

‘copper powder filters’ [9]. These are copper tubes filled with copper powder, in

which 4 signal wires with a length of about 2 meters each are wound. The pow-

der absorbs the high-frequency noise very effectively, leading to an attenuation

of more than -60 dB from a few 100 MHz up to more than 50 GHz [10].

To remove the remaining low-frequency noise, we solder a 20 nF capacitor

between each signal wire and the cold finger ground. In combination with the

∼ 100 Ω resistance of the wires, this forms a low-pass RC filter with a cut-off

frequency of about 100 kHz (even 10 kHz for the wire connected to the I-V con-

verter, due to its input resistance of about 1.3 kΩ). These filters are used for

the wires connecting to ohmic contacts (although they were taken out to perform

some of the high-bandwidth measurements described in this thesis). For the wires

connecting to gate electrodes, a 1:3 voltage divider is present (consisting of a 20

MΩ resistance in the signal line and a 10 MΩ resistance to ground). In this way,

the gate voltages are filtered by a low-pass RC filter with a cut-off frequency of

about 1 Hz. By combining all these filters, the electrons in the sample can be

cooled to an effective temperature below 100 mK (if no extra heat loads such as

coaxial cables are present).

High-frequency signals

High-frequency signals can be applied to gate electrodes via two coaxial cables.

They consist of three parts, connected via standard 2.4 mm Hewlett Packard

connectors (specified up to 50 GHz). From room temperature to 1 Kelvin, a 0.085

inch semi-rigid Be-Cu (inner and outer conductor) coaxial cable is used. From 1

Kelvin to the mixing chamber, we use 0.085 inch semi-rigid superconducting Nb.

From the mixing chamber to the sample holder, flexible tin plated Cu coaxial

cables are present. The coaxes are thermally anchored at 4 K, 1 K, ∼ 800 mK,

∼ 100 mK and base temperature, by clamping each cable firmly between two

copper parts. To thermalize also the inner conductor of the coax, we use Hewlett

Packard 8490D attenuators (typically -20 dB) at 1 K. These attenuators cannot

be used at the mixing chamber, as they tend to become superconducting below

about 100 mK. We have also tried using Inmet 50EH attenuators at the mixing

chamber, but these showed the same problem.
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To generate the high-frequency signals, we use a microwave source (Hewlett

Packard 83650A) that goes up to 50 GHz; a pulse generator (Hewlett Packard

8133A), which generates simple 10 ns to 1 µs pulses with a rise time of 60 ps; and

an arbitrary waveform generator (Sony Tektronix AWS520), which can generate

more complicated pulses with a rise time of about 1 ns. With the cables described

above, the fastest pulse flank we can transmit to the sample is about 200 ps.

Microwave signals are transmitted with about 10 dB loss at 30 GHz.

Special care needs to be given to the connection from the coaxial cable to the

chip, in order to minimize reflections. The sample holder we use, has an SMA

connector that can be connected to the 2.4 mm coaxial cable. At the other end,

the pin of the SMA connector sticks through a small hole in the chip carrier. This

allows it to be soldered to a metal pad on the chip carrier, from which we can

then bond to the chip. This sample holder is used to apply pulses or microwave

signals to a gate electrode.

2.4 Device stability

A severe experimental difficulty that is not related to the measurement setup,

but to the device itself, is the problem of ‘charge switching’. It shows up in

measurements as fluctuations in the position of a Coulomb peak, or as sudden

jumps in the QPC-current that are not related to charging or discharging of a

nearby quantum dot. Generally, these switching events are attributed to (deep)

traps in the donor layer that capture or release an electron close to the quantum

dot [11]. This well-known but poorly understood phenomenon causes fluctuations

in the electrostatic potential landscape in the 2DEG.

The strength of the fluctuations can differ enormously. In some samples,

switching occurs on a time scale of seconds, making only the most trivial mea-

surements possible, whereas in other samples no major switching is visible on

a time scale of hours. It is not clear what exactly determines the stability. It

certainly depends on the heterostructure, as some wafers are clearly better than

others. A number of growth parameters could be important, such as the Al

concentration in the AlGaAs, the doping density and method, the thickness of

the spacer layer between the n-AlGaAs and GaAs, the depth of the 2DEG be-

low the surface, and many more. Recently, we have started a collaboration with

the group of Professor Wegscheider in Regensburg to grow and characterize het-

erostructures in which some of these parameters are systematically varied, hoping

to gain insight in the factors that determine device stability.

Even for the same heterostructure, some devices show less charge switching
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Figure 2.10: Charge switching in a large-bias measurement in the few-electron regime,
for B = 12 T. (a) Differential conductance, dI/dVSD (in grayscale), as a function of
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Identical measurement, taken immediately after (a). A single two-level fluctuator has
become active, causing the effective gate voltage to fluctuate between two values at
any position in the figure, and leading to an apparent splitting of all the lines. This is
considered a measurement of poor stability.

than others. The reasons for this are not clear. There are reports that stability

is improved if the sample is cooled down slowly, while applying a positive volt-

age on all gates that are going to be used in the experiment. This procedure

effectively ‘freezes in’ a negative charge around the gates, such that less negative

gate voltages are sufficient to define the quantum dot at low temperatures. Most

samples described in this thesis have been cooled down from room temperature

to 4 K slowly (in one to two days) with all gates grounded. Others have been

cooled down faster, or with +280 mV on the gates. No clear trend as a function

of these parameters was observed.

As long as we can not suppress the charge fluctuations, finding a stable device

will involve an element of luck: Fig. 2.10 shows two Coulomb diamonds that

were measured during one night, immediately after each other, under identical

conditions. The measurement in Fig. 2.10a shows reasonably stable behavior,

but in Fig. 2.10b the effects of an individual two-level fluctuator are visible. This

particular fluctuator remained active for a week, until the sample was warmed

up.
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Switching has made all experiments we performed more difficult, and has

made some experiments that we wanted to perform impossible. Better control

over heterostructure stability might become essential for the increasingly difficult

steps towards creating quantum dot spin qubits.
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Chapter 3

Few-electron quantum dot circuit with

integrated charge read-out

R. Hanson, J. M. Elzerman, L. M. K. Vandersypen,
L. H. Willems van Beveren, J. S. Greidanus, R. N. Schouten,

S. De Franceschi, S. Tarucha and L. P. Kouwenhoven

In this chapter, we report measurements on a fully tunable double quantum

dot circuit, integrated with two quantum point contacts that serve as charge

detectors. The circuit is defined in a two-dimensional electron gas by means of

surface gates on top of a GaAs/AlGaAs heterostructure. Full control over the

electron number (down to zero), the dot-lead coupling and the inter-dot tunnel

coupling is experimentally demonstrated. In addition, we use microwave radiation

to pump an electron from one dot to the other by absorption of a single photon.

Finally, using charge detection we observe single-electron tunneling in and out of

a single dot in real-time. These experiments demonstrate that this quantum dot

circuit can serve as a good starting point for a scalable spin-qubit system.

Parts of this chapter have been published in Physical Review B 67, 161308 (2003)
and in Applied Physics Letters 85, 4394 (2004).
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3.1 Gate design of few-electron quantum dots

The proposal by Loss and DiVincenzo [1] to use single electron spins in quantum

dots as quantum bits, describes an optimal combination of the single-electron

charge degree of freedom (for convenient manipulation using electrical voltages)

and the spin degree of freedom (which is believed to have a long coherence time,

essential for encoding quantum information). For the control of one-electron

quantum states by electrical voltages, the first requirement is to realize an ap-

propriate quantum dot circuit containing just a single conduction electron.

Single-electron quantum dots have been created in self-assembled structures [2]

and in small vertical pillars defined by etching [3]. Recently, realization of few-

electron dots in semiconductor nanowires [4] and carbon nanotubes [5] has also

been reported. The disadvantage of these types of quantum dots is that they are

hard to integrate into circuits with a controllable coupling between the elements,

although integration of vertical quantum dot structures is currently being pur-

sued [6, 7]. Alternatively, we can use a system of lateral quantum dots defined

in a two-dimensional electron gas (2DEG) by surface gates on top of a semicon-

ductor heterostructure [8]. Here, integration of multiple dots is straightforward,

by simply increasing the number of gate electrodes. In addition, the tunnel cou-

pling between the dots can be tuned in situ, since it is controlled by the gate

voltages. The challenge is to reduce the number of electrons to one per quantum

dot. This has long been impossible, since reducing the electron number tends to

be accompanied by a decrease in the tunnel coupling, resulting in a current too

small to be measured. However, by proper design of the surface gate geometry

the decrease of the tunnel coupling can be compensated for.

In 2000, Ciorga et al. reported measurements on the first lateral few-electron

quantum dot [9]. Their device made use of two types of gates specifically de-

signed to have different functionalities [10]. The gates of one type were big and

largely enclosed the quantum dot. The voltages on these gates determine the dot

potential. The other type of gate was thin and just reached up to the barrier

region. The voltage on this gate has a very small effect on the dot potential, and

it can be used almost independently to set the tunnel barrier. The combination

of the two gate types allows the dot potential (and thereby electron number) to

be changed over a wide range while keeping the tunnel rates high enough for

measuring electron transport through the dot.

Since 2001, we have fabricated and measured several few-electron single and

double quantum dots, of four different designs A-D, shown in Fig. 3.1a-d. These

designs share the different gate functionalities explained above. The first two

types, A and B (Fig. 3.1a-b), have only been used once as few-electron single dots.
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Figure 3.1: Scanning electron microscope images of few-electron quantum dot devices
measured in Delft, showing the metal gate electrodes (light) on top of a GaAs/AlGaAs
heterostructure (dark). (a) Design A. This device was used only as a few-electron single
dot. Due to the similarity of the image to characters from the Japanese ‘Gundam’
animation, this has become known as the Gundam design. (The device was fabricated
by Wilfred van der Wiel at NTT Basic Research Laboratories.) (b) Design B. This
design was used only once as a few-electron single dot. (This device was fabricated
by Wilfred van der Wiel and Ronald Hanson at NTT Basic Research Laboratories.)
(c) Design C, with two extra side gates to form two quantum point contacts (QPCs).
Devices having this design were operated many times as a single dot, and twice as a few-
electron double dot. White dotted circles indicate the two quantum dots, white arrows
show the possible current paths. A bias voltage, VDOT , can be applied between source 2
and drain 1, leading to current through the dot(s), IDOT . A bias voltage, VSD1 (VSD2),
between source 1 (source 2) and drain 1 (drain 2), yields a current, IQPC , through the
left (right) QPC. (This device was fabricated by Ronald Hanson and Laurens Willems
van Beveren at NTT Basic Research Laboratories.) (d) Design D. In this design the
lead for the QPC is separated from the dot lead by extending one of the gates. Devices
of this type were operated many times as a single dot. (This device was fabricated by
Wouter Naber and Laurens Willems van Beveren in DIMES in Delft.)
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In both cases, one of the gate electrodes was not functioning, which prevented us

from testing if these devices also function as few-electron double dots. In design A

(Fig. 3.1a), two gates coming from the top end in small circles (the ‘eyes’). These

gates were meant to make the dot confinement potential steeper, by applying a

positive voltage to them (up to ∼ 0.5 V). The gates were not effective, and were

left out in later designs.

To verify that the device of design A can be operated as a few-electron single

quantum dot, we performed a large-bias measurement of the differential conduc-

tance through the dot. Going towards more negative gate voltage, a series of

‘Coulomb diamonds’ is revealed (Fig. 3.2a), in which the number of electrons on

the dot, N , is constant. This is followed by a region in which the ‘diamond’ does

not close, even up to a source-drain voltage of 10 mV, i.e. several times larger

than the typical charging energy for a small dot (∼ 2 meV). Therefore, in this

region N = 0.
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Figure 3.2: Kondo effect in a one-electron lateral quantum dot of the type shown
in Fig. 3.1a. (a) Differential conductance (in grayscale) versus source-drain voltage,
VSD, and plunger gate voltage, Vg. In the white diamond and the white region to the
right (indicated by N = 1 and N = 0, respectively), no current flows due to Coulomb
blockade. The N = 0 region opens up to more than 10 mV, indicating that the dot
is really empty here. (b) Close-up of the N = 1 diamond for stronger coupling to the
reservoirs. A sharp Kondo resonance is visible at zero source-drain voltage. Although
charge switching is severe in this sample, the position of the Kondo resonance is very
stable, as it is pinned to the Fermi energy of the reservoirs. (c) Kondo zero-bias peak
in differential conductance, taken at the position indicated by the dotted line in (b).
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The tunnel coupling between the dot and the source and drain reservoirs

could be changed by simply readjusting the gate voltages. For strong coupling,

a zero-bias peak – hallmark of the Kondo effect [11] – became visible throughout

the one-electron diamond (Fig. 3.2b). From the width of the zero-bias peak

(Fig. 3.2c) we found a Kondo temperature of about 0.4 K. The appearance of

a one-electron Kondo effect (unpublished) implies that this quantum dot design

allows the tunnel coupling to be tuned over a wide range, even in the few-electron

regime. In addition, it is striking evidence that we can confine a single spin in a

lateral quantum dot.

In the second quantum dot design (Fig. 3.1b), the narrow ‘plunger’ gates

approach the dot more from the sides, rather than from below, making the dots

more symmetric. In this way, they are further away from the central tunnel

barrier, reducing the effect they have on the tunnel rate. Also, the gate coming

from the top of the picture was made thinner, in order to make the tunnel barriers

more easily controllable [9]. This device was easily tunable.

In design C (Fig. 3.1c) quantum point contacts (QPCs) were added to serve

as charge detectors. The QPCs were placed close to the dots, thus ensuring a

good charge sensitivity. To create space for the QPCs, the plunger gates were

again set as in the first design. Two devices with this gate design have functioned

as a few-electron double dot, and several others as few-electron single dots.

In design C, the QPC and the dot share one lead, which makes it inconve-

nient to perform transport measurements through the dot and at the same time

measure the current through the QPC. To solve this problem, we have created

separate leads for the dot and the QPC in design D (Fig. 3.1d) by extending the

side gate all the way to the edge of the 2DEG mesa. Also, the plunger gates were

extended to increase the capacitive coupling to electrons in the dot.

3.2 Device characterization

In the rest of this chapter, we experimentally study devices of design C (see

Fig. 3.1c). They are created in a GaAs/AlGaAs heterostructure (grown by T.

Saku at NTT Basic Research Laboratories), with a 2DEG 90nm below the surface

(electron density 2.9 · 1015 m−2). The double dot is defined by applying negative

voltages to the 6 central gates. Gate T in combination with the left (right) gate,

L (R), controls the tunnel barrier from the left (right) dot to drain 1 (source

2). Gate T in combination with the middle gate, M , controls the tunnel barrier

between the two dots. The narrow ‘plunger’ gates, PL and PR, are used to change

the electrostatic potential of the left and right dot, respectively. The left plunger
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gate is connected to a coaxial cable, so that we can apply high-frequency signals.

In the present experiments we do not apply dc voltages to PL. In order to control

the number of electrons on the double dot, we use gate L for the left dot and PR

or R for the right dot. All measurements are performed with the sample cooled

to a base temperature of about 10 mK inside a dilution refrigerator.

We first characterize the individual dots using standard Coulomb blockade

experiments [8], i.e. by measuring IDOT . We find that the energy cost for adding

a second electron to a one-electron dot is 3.7 meV. The one-electron excitation

energy (i.e. the difference between the ground state and the first orbital excited

state) is 1.8 meV at zero magnetic field. For a two-electron dot the energy

difference between the spin singlet ground state and the spin triplet excited state

is 1.0 meV at zero magnetic field. Increasing the field (perpendicular to the

2DEG) leads to a transition from a singlet to a triplet ground state [3] at about

1.7 Tesla, as can be seen from the large-bias measurement in Fig. 3.3a. From

this measurement, we can extract the energy difference between the singlet and

triplet states, EST , as a function of the magnetic field (plotted in Fig.3.3b).
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Figure 3.3: Single-triplet ground state transition in a two-electron quantum dot.
(a) Differential conductance dIDOT /dVSD versus gate voltage, VM , and perpendicular
magnetic field, B⊥. Dark (light) corresponds to high (low) value for dIDOT/dVSD.
Within the stripe of finite conductance, set by the source-drain bias voltage of 750
µeV, the evolution of the energy difference between the singlet state (ground state at
zero field) and the triplet state is visible [8]. At around 1.7 T the singlet and triplet
states cross and the ground state becomes a spin triplet. (b) Energy difference between
the singlet and the triplet states, EST , as a function of B⊥, extracted from (a). The
ground state is indicated by S (for singlet) and T (for triplet). Near the ground state
transition, overlapping peaks prevent a reliable estimate for EST .
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3.3 Quantum Point Contact as charge detector

As an alternative to measuring the current through the quantum dot, we can also

measure the charge on the dot using one of the QPCs [12, 13]. To demonstrate

this functionality, we first define only the left dot (by grounding gates R and

PR), and use the left QPC as a charge detector. The QPC is formed by applying

negative voltages to Q − L and L. This creates a narrow constriction in the

2DEG, with a conductance, G, that is quantized when sweeping the gate voltage

VQ−L. The last plateau (at G = 2e2/h) and the transition to complete pinch-off

(i.e. G = 0) are shown in Fig. 3.4a. We tune the QPC to the steepest point

(G ≈ e2/h), where the QPC-conductance has a maximum sensitivity to changes

in the electrostatic environment, including changes in the charge of the nearby

quantum dot.

To change the number of electrons in the left dot, we make gate voltage VM

more negative (see Fig. 3.4b). This reduces the QPC current, due to the capac-

itive coupling from gate M to the QPC constriction. In addition, the changing

gate voltage periodically pushes an electron out of the dot. The associated sud-

den change in charge lifts the electrostatic potential at the QPC constriction,

resulting in a step-like feature in IQPC (see the expansion in Fig. 3.4b, where

the linear background is subtracted). This step indicates a change in the elec-

tron number. So, even without passing current through the dot, IQPC provides

information about the charge on the dot.

To enhance the charge sensitivity we apply a small modulation (0.3 mV at

17.7 Hz) to VM and use lock-in detection to measure dIQPC/dVM [13]. The steps

in IQPC now appear as dips in dIQPC/dVM . Figure 3.4c shows the resulting dips,

as well as the corresponding Coulomb peaks measured in the current through the

dot. The coincidence of the Coulomb peaks and dips demonstrates that the QPC

indeed functions as a charge detector. The height of the current step induced by

a change in electron occupation, ∆IQPC,e, is ∼ 50 pA in Fig. 3.4b. We typically

find ∆IQPC,e to be 1-2% of the total current. The unique advantage of QPC

charge detection is that it provides a signal even when the tunnel barriers of the

dot are so opaque that IDOT is too small to be measured [12, 13]. This allows us

to study quantum dots even when they are virtually isolated from the reservoirs.

This is demonstrated in Fig. 3.4d, where the tunnel coupling between the dot

and the leads is so weak that the Coulomb peaks are not resolved anymore. Even

in this regime, the QPC can track the transitions in electron number. We will

explore this functionality in more detail in chapter 6.
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Figure 3.4: Operating the QPC as a charge detector of a single dot. (a) Conductance,
G, of the left QPC versus gate voltage, VQ−L, showing the last quantized plateau (at
G = 2e2/h) and the transition to complete pinch-off (G = 0). The QPC is set to the
point of highest charge sensitivity, at G ≈ e2/h (indicated by the dashed cross). (b)
Current through the left QPC, IQPC , versus left-dot gate voltage, VM , with VSD1 = 250
µV and VSD2 = VDOT = 0. Steps indicated by arrows correspond to changes in the
number of electrons on the left dot. Encircled inset: the last step (∼ 50 pA high),
with the linear background subtracted. (c) Comparison between transport and charge
detection measurements. Upper panel: Coulomb peaks measured in transport current
through the left dot, with VDOT = 100 µV and VSD1 = VSD2 = 0. Lower panel:
changes in the number of electrons on the left dot measured with the left QPC, with
VSD1 = 250 µV and VSD2 = VDOT = 0). (d) Measurements as in (c), but in the regime
of very weak dot-lead coupling. In the lower panel, charge detection shows an electron
transition around -1.5 V, indicated by the arrow, whereas the Coulomb peak is not
resolved in the transport measurement (upper panel). (Because the signal in (d) is a
numerical derivate of IQPC some dips show a much worse signal-to-noise ratio than in
(c), where the signal is obtained using a lock-in technique.)
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3.4 Double dot charge stability diagram

The QPC can also detect changes in the charge configuration of the double dot.

To demonstrate this, we use the QPC on the right to measure dIQPC/dVL versus

VL and VPR
(Fig. 3.5a), where VL controls (mainly) the number of electrons on the

left dot, and VPR
(mainly) that on the right. Dark lines in the figure signify a dip

in dIQPC/dVL, corresponding to a change in the total number of electrons on the

double dot. Together these lines form the so-called ‘honeycomb diagram’ [14, 15].

The almost-horizontal lines correspond to a change in the number of electrons

on the left dot, whereas almost-vertical lines indicate a change in the electron

number on the right.

In the upper left region the ‘horizontal’ lines are not present, even though

the QPC can still detect changes in the charge, as demonstrated by the presence

of the ‘vertical’ lines. We conclude that in this region the left dot contains zero

electrons. Similarly, a disappearance of the ‘vertical’ lines occurs in the lower

right region, showing that here the right dot is empty. In the upper right region,

the absence of lines shows that here the double dot is completely empty. This is

indicated by the electron occupation numbers ‘00’.

We are now able to identify the exact charge configuration of the double dot in

every honeycomb cell, by simply counting the number of ‘horizontal’ and ‘vertical’

lines that separate it from the ‘00’ region. In Fig. 3.5b the first few honeycomb

cells are labelled according to their charge configuration, with e.g. the label ‘21’

meaning 2 electrons in the left dot and 1 on the right.

Besides the dark lines, also short bright lines are visible, signifying a peak in

dIQPC/dVL. These bright lines correspond to an electron being transferred from

one dot to the other, with the total electron number remaining the same. (The

fact that some charge transitions result in a dip in dIQPC/dVL and others in a

peak, derives from the fact that we use the QPC on the right and apply the

modulation to the gate on the left. When an electron is pushed out of the double

dot by making VL more negative, the QPC opens up and dIQPC/dVL displays a

dip. When VL pushes an electron from the left to the right dot, the QPC is closed

slightly, resulting in a peak.)

The visibility of all lines in the honeycomb pattern demonstrates that the QPC

is sufficiently sensitive to detect all charge transitions in the double quantum

dot. Generally, we find the QPC on the right side to be about a factor of 2 more

sensitive to changes in the electron number on the right dot than to changes in

the electron number on the left dot.
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Figure 3.5: Using the QPC to measure the charge configuration of a double quantum
dot in the few-electron regime. (a) dIQPC/dVL (in grayscale) versus VL and VPR

, with
VSD2 = 100 µV and VSD1 = VDOT = 0. A small modulation (0.3 mV at 17.77 Hz)
is applied to VL, and the resulting modulation in IQPC is measured with a lock-in
amplifier to give dIQPC/dVL directly. The label ‘00’ indicates the region where the
double dot is completely empty. In the bottom left corner the dark lines are poorly
visible. Here the tunnel rates to the reservoirs are quite large, leading to smearing
of the steps in the QPC current, and therefore to smaller dips in dIQPC/dVL. (b)
Zoom-in of Fig. 3.5a, showing the ‘honeycomb’ diagram for the first few electrons in
the double dot. The black labels indicate the charge configuration, with ‘21’ meaning
2 electrons in the left dot and 1 on the right.

3.5 Tunable tunnel barriers in the few-electron

regime

In measurements of transport through lateral double quantum dots, the few-

electron regime has never been reached [15]. The problem is that the gates that

are used to deplete the dots also strongly influence the tunnel barriers. Reducing

the electron number would therefore always lead to the Coulomb peaks becoming

unmeasurably small, but not necessarily due to an empty double dot. The QPC

detectors now permit us to compare charge and transport measurements.

Figure 3.6a shows the current through the double dot in the same region as

shown in Fig. 3.5b. In the bottom left region the gates are not very negative,

hence the tunnel barriers are quite open. Here the resonant current at the charge

transition points is quite high (∼ 100 pA, dark gray), and lines due to cotunneling
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Figure 3.6: Current through the double quantum dot in the few-electron regime. (a)
IDOT (in logarithmic grayscale) versus VL and VPR

in the same region as shown in
Fig. 3.5b, with VDOT = 100 µV and VSD1 = VSD2 = 0. Dotted lines are extracted from
Fig.3.5b. Dark gray indicates a current flowing, with the darkest regions (in the bottom
left corner) corresponding to ∼ 100 pA. In the light gray regions current is zero due to
Coulomb blockade. Inside the dashed square, the last triple points are faintly visible
(∼ 1 pA). (A smoothly varying background current due to a small leakage current from
a gate to the 2DEG has been subtracted from all traces.) (b) Close-up of the region
inside the dashed square in (a), showing the last two triple points before the double dot
is completely empty. The current at these triple points is very small (< 1 pA) since the
tunnel barriers are very opaque. (c) Same two triple points for different values of the
voltage applied to the gates defining the tunnel barriers. For these settings, the two
individual triple points are well resolved, with a height of about 5 pA. The cotunneling
current is not visible. (d) Same two triple points, but now with the gate voltages such
that the tunnel barriers are very transparent. The current at the triple points is about
70 pA, and the cotunneling current is clearly visible.

are also visible [15]. Towards the top right corner the gate voltages become

more negative, thereby closing off the barriers and reducing the current peaks

(lighter gray). The last ‘triple points’ [15] that are visible (< 1 pA) are shown in

the dashed square. Using the dotted lines, extracted from the measured charge

transition lines in Fig. 3.5b, we label the various regions in the figure according to

the charge configuration of the double dot. Apart from a small shift, the dotted

lines correspond nicely to the regions where a transport current is visible. This

allows us to be confident that the triple points in the dashed square are really the

last ones before the double quantum dot is empty. We are thus able to measure
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Figure 3.7: Controlling the inter-dot coupling with VM . These charge stability dia-
grams of the double quantum dot are measured using the QPC on the left. A small
modulation (3 mV at 235 Hz) is applied to gate PR, and dIQPC/dVPR

is measured
with a lock-in amplifier and plotted in grayscale versus VL and VR. A magnetic field
of 6 Tesla is applied in the plane of the 2DEG. (a) Weak-coupling regime. VM is
such that all dark lines indicating charge transitions are straight. The tunnel-coupling
between the two dots is therefore negligible compared to the capacitive coupling. (b)
Intermediate-coupling regime. VM is 0.07 V less negative than in (a), such that lines
in the bottom left corner are slightly curved. This signifies that here the inter-dot
tunnel-coupling is comparable to the capacitive coupling. (c) Strong-coupling regime.
VM is 0.1 V less negative than in (b), such that all lines are very curved. This implies
that the tunnel-coupling is dominating over the capacitive coupling and the double dot
behaves as a single dot.
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transport through a one-electron double quantum dot.

Even in the few-electron regime, the double dot remains fully tunable. By

changing the voltage applied to gate T , we can make the tunnel barriers more

transparent, leading to a larger current through the device. We use this procedure

to increase the current at the last set of triple points. For the gate voltages used

in Fig. 3.6b, the resonant current is very small (< 1 pA), and the triple points

are only faintly visible. By making VT less negative, the resonant current peaks

grow to about 5 pA (Fig. 3.6c). The two triple points are clearly resolved and

the cotunneling current is not visible. By changing VT even more, the current at

the last triple points can be increased to ∼ 70 pA (Fig. 3.6d). For these settings,

the triple points have turned into lines, due to the increased cotunneling current.

This sequence demonstrates that we can tune the few-electron double dot from

being nearly isolated from the reservoirs, to being very transparent.

We can also control the inter-dot coupling, by changing the voltage applied

to gate M . This is demonstrated with a QPC charge measurement. We apply a

square wave modulation of 3 mV at 235 Hz to the rightmost plunger gate, PR,

and measure dIQPC/dVPR
using a lock-in amplifier. Fig. 3.7a shows the famil-

iar honeycomb diagram in the few-electron regime. All lines indicating charge

transitions are very straight, implying that for the gate settings used, the tunnel-

coupling between the two dots is negligible compared to the capacitive coupling.

This is the so-called weak-coupling regime. (We note that the regular shape of

the honeycomb pattern demonstrates that the double dot as a whole is still quite

well-coupled to the leads, so that the total number of electrons can always find its

lowest-energy value, unlike in Ref. [16].) By making VM less negative, the tunnel

barrier between the two dots is made more transparent, and the intermediate-

coupling regime is reached (Fig. 3.7b). Most lines are still straight, except in the

bottom left corner, where they are slightly curved. This signifies that here the

inter-dot tunnel-coupling is comparable to the capacitive coupling. If we make

VM even less negative, we reach the strong-coupling regime (Fig. 3.7c). In this

case, all lines are very curved, implying that the tunnel-coupling is dominating

over the capacitive coupling. In this regime the double dot behaves like a single

dot.

3.6 Photon-assisted tunneling

The use of gated quantum dots for quantum state manipulation in time requires

the ability to modify the potential at high frequencies. We investigate the high-

frequency behavior in the region around the last triple points (Fig. 3.8a), with a
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Figure 3.8: Photon-assisted tunneling in a one-electron double quantum dot. (a)
Current through the double dot at the last set of triple points, with zero bias voltage
(VDOT = VSD1 = VSD2 = 0). A microwave signal of 50 GHz is applied to PL. The
microwaves pump a current, IDOT , by absorption of single photons [15]. This photon-
assisted current shows up as two lines, indicated by the two arrows. The white line
(bottom) corresponds to electrons being pumped from the left to the right reservoir, the
dark line (top) corresponds to pumping in the reverse direction. In the middle, around
the dotted line separating the 01 from the 10 configuration, a finite current is induced
by an unwanted voltage drop over the double dot, due to asymmetric coupling of the ac-
signal to the two leads. (b) Separation between the two photon-assisted tunneling lines
versus microwave frequency. The dependence is linear down to the lowest frequency of
about 6 GHz, from which it follows that the inter-dot tunnel coupling (half the energy
difference between bonding and anti-bonding state) is smaller than ∼ 12 µeV.

50 GHz microwave-signal applied to gate PL. At the dotted line the 01 and 10

charge states are degenerate in energy, so one electron can tunnel back and forth

between the two dots. Away from this line there is an energy difference and only

one charge state is stable. However, if the energy difference matches the photon

energy, the transition to the other dot is possible by absorption of a single pho-

ton. Such photon-assisted tunneling events give rise to the two lines indicated

by the arrows. At the lower (higher) line electrons are pumped from the the left

(right) dot to the other one, giving rise to a negative (positive) photon-assisted

current. We find that the distance (in terms of gate voltage) between the two

photon-assisted tunneling lines, ∆VL, scales linearly with frequency (Fig. 3.8b),

as expected in the weak-coupling regime [15]. From the absence of bending of
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the line in Fig. 3.8b down to a frequency of 6 GHz, it follows that the inter-dot

tunnel coupling is smaller than about 12 µeV.

3.7 Real-time observation of single-electron tun-

neling

If the time between tunnel events is longer than the time needed to determine the

number of electrons on the dot – or equivalently: if the bandwidth of the charge

detection exceeds the tunnel rate – electron tunneling can be observed in real-

time. In our setup, the measured current noise integrated from dc is comparable

to the current step induced by an electron tunneling on or off the dot (∆IQPC,e)

for a bandwidth of 80 kHz, and 2.5 times smaller than ∆IQPC,e around 40 kHz

[17]. These numbers correspond to a QPC voltage bias of 1 mV. A larger voltage

bias is found to influence the tunneling statistics, possibly due to photon-assisted

tunneling. We set the cut-off frequency of the external low-pass filter at 40 kHz,

so we should see clear steps in time traces of the QPC current, corresponding to

single electrons tunneling on or off the dot.

We use a one-electron single dot defined by gates T , M and R (see Fig. 3.1c),
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Figure 3.9: Measured changes in the QPC current, ∆IQPC , with the electrochemical
potential in the dot and in the reservoir nearly equal. ∆IQPC is ‘high’ and ‘low’ for 0
and 1 electrons on the dot respectively (QPC bias VSD2 = 1 mV; the steps in ∆IQPC

are ≈ 300 pA). The small roll of the baseline is at 50 Hz. Traces are offset for clarity.
(a) The dot potential is lowered from top to bottom. (b) The tunnel barrier is lowered
from top to bottom.
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and tune the tunnel barriers such that the dot is virtually isolated from the lead

that is connected to the QPC channel path. In this regime, the dot is operated as

a charge box, coupled to only one reservoir. Next, the electrochemical potential

in the dot is aligned with the electrochemical potential in the reservoir. Now

the electron can spontaneously tunnel back and forth between the dot and the

lead, and the QPC current should exhibit a random telegraph signal (RTS). This

is indeed what we observe experimentally (Fig. 3.9). In order to ascertain that

the RTS really originates from electron tunnel events between the dot and the

reservoir, we verify that (1) the dot potential relative to the Fermi level determines

the fraction of the time an electron resides in the dot (Fig. 3.9a) and (2) the dot-

lead tunnel barrier sets the RTS frequency (Fig. 3.9b). The shortest steps that

clearly reach above the noise level are about 8 µs long. This is consistent with

the 40 kHz filter frequency, which permits a rise time of 8 µs.

We can also induce tunnel events by pulsing the dot potential using fast

voltage pulses on the plunger gate, so N predictably changes from 0 to 1 and back

to 0. The response of the QPC current to such a pulse contains two contributions

(Fig. 3.10a). First, the shape of the pulse is reflected in ∆IQPC , as the pulse gate

couples capacitively to the QPC. Second, some time after the pulse is started, an

electron tunnels into the dot and ∆IQPC goes down by about 300 pA. Similarly,

∆IQPC goes up by 300 pA when an electron leaves the dot, some time after the

pulse ends. We observe that the time before tunneling takes place is randomly
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Figure 3.10: (a) Measured changes in the QPC current, ∆IQPC, when a pulse is
applied to gate PR, near the degeneracy point between 0 and 1 electrons on the dot
(VSD2 = 1 mV). (b) Average of 286 traces as in (a). The top and bottom panel are
taken with a different setting of gate M . The damped oscillation following the pulse
edges is due to the 8th-order 40 kHz filter used.
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distributed, and obtain a histogram of this time simply by averaging over many

single-shot traces (Fig. 3.10b). The measured distribution decays exponentially

with the tunnel time, characteristic of a Poisson process. The average time before

tunneling corresponds to Γ−1, and can be tuned by adjusting the tunnel barrier.

3.8 Conclusions

The realization of a controllable few-electron quantum dot circuit represents a

significant step towards controlling the coherent properties of single electron spins

in quantum dots [1]. Integration with the QPCs permits charge read-out of closed

quantum dots. The real-time detection of electron tunneling opens the way to

read-out of electron spins by utilizing spin-to-charge conversion. We note that

charge read-out only affects the spin state indirectly, via the spin-orbit interac-

tion. The back-action on the spin should therefore be small (until spin-to-charge

conversion is initiated), and can be further suppressed by switching on the charge

detector only during the read-out stage. In the following chapters, we will use

the quantum dot circuit presented here to study the spin states of a few-electron

dot.
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Chapter 4

Zeeman energy and spin relaxation

of a single electron

R. Hanson, B. Witkamp, L. M. K. Vandersypen,
L. H. Willems van Beveren, J.M. Elzerman

and L. P. Kouwenhoven

In this chapter, we study the spin states of a single electron confined in a quantum

dot. In a magnetic field, applied parallel to the two-dimensional electron gas in

which the quantum dot is defined, Zeeman splitting of the orbital states is directly

observed by measurements of electron transport through the dot. By applying

short voltage pulses, we can populate the excited spin state with one electron

and monitor relaxation of the spin. We find a lower bound on T1 of 50 µs at 7.5

T, only limited by our signal-to-noise ratio. A continuous measurement of the

charge on the dot has no observable effect on the spin relaxation.

This chapter has been published in Physical Review Letters 91, 196802 (2003).
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4.1 Introduction

The electron spin states in quantum dots (QDs) are expected to be very stable,

because the zero-dimensionality of the electron states in QDs leads to a significant

suppression of the most effective 2D spin-flip mechanisms [1]. Relaxation between

Zeeman sublevels in closed GaAs QDs is expected to be dominated by hyperfine

interaction with the nuclei at magnetic fields below 0.5 T [3] and by spin-orbit

interaction at higher fields [4]. At 1 T, theory predicts a T1 of 1 ms in GaAs [4].

For comparison, in n-doped self-assembled InAs QDs containing one resident

electron, pump-probe photoluminescence measurements gave a single-electron

spin relaxation time of 15 ns (at B=0 T, T= 10 K) [5]. In undoped self-assembled

InAs QDs, the exciton polarization is frozen throughout the exciton lifetime, giv-

ing a relaxation time >20 ns [6].

Electrical measurements of the single-electron spin relaxation time have up to

now remained elusive. In vertical QDs, where electrical measurements on a single

electron were reported almost a decade ago [7], it has been difficult to directly

resolve the Zeeman splitting of orbitals [8]. As demonstrated in chapter 3, the

one-electron regime was also reached in single [9] and double lateral GaAs QDs

[10], which are formed electrostatically within a two-dimensional electron gas

(2DEG) by means of surface gates.

In this chapter we study the spin states of a one-electron lateral QD directly,

by performing energy spectroscopy and relaxation measurements. We observe a

clear Zeeman splitting of the orbital states in electron transport measurements

through the QD, and find no signature of spin relaxation in our experimental

time window, leading to a lower bound on T1 of 50 µs. This lower bound is two

to three orders of magnitude longer than spin relaxation times observed in bulk

n-type GaAs [11], GaAs quantum wells [12] and InAs QDs [5].

4.2 Zeeman energy

The quantum dot is defined in a GaAs/Al0.3Ga0.7As heterostructure, containing

a 2DEG 90 nm below the surface with an electron density ns = 2.9 × 1011 cm−2

(Fig. 4.1a). A magnetic field (0-14 T) is applied parallel to the 2DEG. All mea-

surements are performed in a dilution refrigerator at base temperature T = 20

mK.

We tune the device to the few-electron regime and identify the 0↔1 electron

transition by the absence of further transitions under applied source-drain voltage

up to 10 mV. The electron number is confirmed by using the nearby QPC as a

charge detector [14, 10, 15]. We find a charging energy of 2.4 meV and an orbital
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Figure 4.1: (a) Scanning Electron Micrograph of the metallic surface gates [13].
Gates M , R and T are used to form the quantum dot indicated by a white circle.
Additionally, gate Q can be used to form a quantum point contact (QPC). To apply
high-frequency signals, gate P is connected to a coaxial cable. Currents through the
dot, IQD, and through the QPC, IQPC , are measured as a function of applied bias
voltage, VSD = (µS−µD)/e and VQD = (µQ−µD)/e respectively. (b)-(d) Differential
conductance dIQD/dVSD as a function of VSD and gate voltage near the 0↔1 electron
transition, at parallel magnetic fields of 6, 10 and 14 T. Darker corresponds to larger
dIQD/dVSD. The zero-field spin degeneracy of both the ground state (GS) and the first
orbital excited state (ES) is lifted by the Zeeman energy as indicated by arrows. (e)
Extracted Zeeman splitting ∆EZ as a function of B. At high fields a clear deviation
from the bulk GaAs g-factor of -0.44 (dashed line) is observed.

level spacing of 1.1 meV at B = 0 T.

In a parallel magnetic field, the electron states acquire a Zeeman energy shift,

which causes the orbital levels to split by ∆EZ = gµBB [16]. Figs. 4.1b-d show

stability diagrams [7] around the 0↔1 electron transition, measured at B = 6 T,

10 T and 14 T. A clear Zeeman splitting of both ground and first orbital excited

state is seen directly in this spectroscopy measurement [17]. (Because of the

large asymmetry in the tunnel barriers, the visibility of the Zeeman splitting is

very different for positive and for negative bias [18].) Using this measurement

technique, we can extract the value of the Zeeman splitting ∆EZ . In Fig. 4.1e,

∆EZ is plotted as a function of B. At high fields a clear deviation from the bulk

GaAs g-factor of -0.44 (dashed line) is observed.
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A least-squares fit of the data to a second-order polynomial, which extrapo-

lates with negligible deviation to the origin, gives

|g| = (0.43 ± 0.04) − (0.0077 ± 0.0020) B (T ) , (4.1)

similar to early measurements on 2DEGs [19]. If we force the fit to be linear in

B, we get |g|=0.29 ± 0.01, with a zero-field splitting ∆EZ,B=0=(34 ± 6)µeV.

For comparison, we present similar measurements on a different heterostruc-

ture, where the 2DEG is 60 nm below the surface. Figure 4.2a-d show high

source-drain bias measurements around the 0↔1 electron transition for differ-

ent in-plane magnetic fields. The extracted B-dependence of ∆EZ is given in

Fig. 4.2e. The value of the g-factor, |g| = 0.27 ± 0.02, is significantly smaller

than the bulk value. Furthermore, in contrast to the data in Fig. 4.1e, there is

no dependence on magnetic field.

Factors which can influence the magnetic field dependence of the g-factor

include: (1) extension of the electron wave function into the Al0.3Ga0.7As region,

where g = +0.4 [20, 21], (2) thermal nuclear polarization, which decreases the

effective magnetic field through the hyperfine interaction [22], (3) dynamic nuclear

polarization due to electron-nuclear flip-flop processes in the dot, which enhances

the effective magnetic field [22], (4) the nonparabolicity of the GaAs conduction

band [20] and (5) the spin-orbit coupling [23]. Factors 2 and 3 can not explain

our data, since they do not depend on the heterostructure. More experiments

are needed to separate the other effects, e.g. by measuring the dependence of the

g-factor on the orientation of the in-plane magnetic field [23]. However, this is
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outside the scope of this research. In the remaining part of the chapter, we will

use the device shown in Fig. 4.1a.

4.3 Measuring the spin relaxation time

The two spin states |↑〉 (lowest energy) and |↓〉 can be used as the basis states

of a quantum bit [24, 25]. In order to perform quantum operations and to allow

sufficient time for read-out of the quantum bit, it is necessary that the spin

excited state |↓〉 be stable. We investigate this by measuring the relaxation

time from |↓〉 to |↑〉. By applying short pulses to gate P , we can modulate the

potential of the dot and thus the position of the energy levels relative to the

electrochemical potentials of the leads, µS and µD. This enables us to populate

the spin excited state |↓〉 and monitor relaxation to |↑〉. The applicability of

various pulse methods for measuring the spin relaxation time depends on two

timescales. If the relaxation rate W (=1/T1) is at least of the same order as the

outgoing tunnel rate ΓD, i.e. W ≥ΓD, we can determine T1 by applying single-

step pulses. This method has previously been used to measure the relaxation

time between orbital levels in a QD (∼10 ns) [2]. In the other limit, W < ΓD,

a more elaborate method using double-step pulses is needed [2]. We proceed as

follows. First, we apply single-step pulses to show that W <ΓD. Then we apply

double-step pulses to measure T1. All data shown are taken at B = 7.5 T, and

reproduced at 14 T. At fields below 6 T the Zeeman splitting is too small to be

resolved in pulse experiments. The bias voltage is always much smaller than the

charging energy, thus allowing at most one electron on the dot.

4.4 Spin relaxation measurement using single-

step pulses

The single-step pulses are schematically depicted in Fig. 4.3a. Fig. 4.3b shows cur-

rent traces for different amplitudes of the pulses. Transport of electrons through

the ground state takes place when |↑〉 lies in the bias window (i.e. µS >E↑>µD).

When we apply single-step pulses, this condition is met at two different values

of the gate voltage VT and therefore the Coulomb peak splits in two. Fig. 4.3c

shows the positions of the energy levels during the two phases of the pulse for

the left peak in Fig. 4.3b. Here, electrons flow from source to drain during the

“high” phase of the pulse. Similarly, Fig. 4.3e corresponds to the right peak in

Fig. 4.3b, where ground state transport occurs during the “low” phase of the
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Figure 4.3: One-electron spin relaxation studied using single-step pulses at 7.5T. (a)
Schematic waveform of the pulse train (rise/fall time of 0.2 ns). (b) Current traces
under applied pulses, offset for clarity. (c)-(e) Diagrams showing the position of the
energy levels during the two phases of the pulse for threee different gate voltage settings,
corresponding to the three peaks in (b). (f) Average number of electrons tunneling per
cycle (=I(tl+th)/e) through the ground state <n↑>, as in (c), and through the excited
state <n↓>, as in (d), vs. pulse length th. The <n↑> shows no decay, as expected for
a stable current, whereas <n↓> saturates. However, this saturation is not due to spin
relaxation (see text).

pulse. When the pulse amplitude exceeds the Zeeman splitting (≈160 µeV), an

extra current peak becomes clearly visible. This peak is due to transient trans-

port via the spin-down state |↓〉 during the “high” phase of the pulse (Fig. 4.3d).

The transient current flows until |↑〉 becomes occupied and Coulomb blockade



4.4 Spin relaxation measurement using single-step pulses 53

prohibits other electrons to enter the dot. Occupation of |↑〉 can happen either

via tunneling of an electron from the leads into |↑〉 when the dot is empty, or by

spin relaxation from |↓〉 to |↑〉. For both these processes, the probability to have

occurred increases with time. Therefore, the number of electrons tunneling via

|↓〉 per cycle, <n↓>, saturates with increasing pulse length th. In particular, if

the tunnel rate ΓS through the incoming barrier is much larger than the tunnel

rate ΓD through the outgoing barrier, i.e. ΓS � ΓD [26], it can be shown that

[18, 27]

<n↓> � AΓD,↓(1 − e−Dth)/D , (4.2)

where A � ΓS,↓/(ΓS,↑ + ΓS,↓) is the injection efficiency into |↓〉, and ΓD,↓ is the

tunnel rate from |↓〉 to the drain (see Fig. 4.3c-d). The saturation rate D is

the sum of W , the spin relaxation rate from |↓〉 to |↑〉, and (1−A)ΓD,↓, which

accounts for direct tunneling into |↑〉:

D = W + (1−A)ΓD,↓ . (4.3)

By measuring <n↓> for different pulse widths th, we can find D and AΓD,↓ using

Eq. (4.2). Together with the value of A, which can be extracted from large-bias

measurements without pulses, we can determine the spin-relaxation rate W=1/T1

via Eq. (4.3).

In Fig. 4.3f we show the average number of tunneling electrons per cycle for

the stable current, <n↑>, and for the transient current, <n↓>. Clearly, <n↑>
increases linearly with pulse length, whereas <n↓> saturates, as expected. From

fitting <n↓> to Eq. (4.2) we find D=(1.5 ± 0.2) MHz and AΓD,↓=(0.47 ± 0.09)

MHz. Furthermore, A=(0.28 ± 0.05), leading to (1−A)ΓD,↓=(1.2 ± 0.3) MHz

and W=(0.30± 0.35) MHz. Averaging over similar measurements, using different

tunnel rates and tl, leads to W=(0.20± 0.25) MHz.

We conclude that the spin relaxation rate (W<0.5 MHz) is much smaller than

the tunnel rates (ΓS �ΓD≈1.6 MHz). This means that the decay of the transient

current is dominated by direct injection into |↑〉, and therefore the single-step

pulse method can only provide a weak lower bound on T1. To circumvent this,

we decouple the read-out stage from the relaxation stage by inserting an extra

pulse step. This way, an electron can only tunnel out of the dot after the waiting

time, enabling us to directly measure the relaxation probabilities as a function of

waiting time [2], as explained below.
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4.5 Spin relaxation measurement using double-

step pulses

The schematic waveform of the double-step pulses is shown in Fig. 4.4a. Applying

these pulses results in current traces as in Fig. 4.4b. Figs. 4.4c-e depict the energy

levels for the |↓〉 current peak indicated in Fig. 4.4b at the three different stages

of the pulse cycle. First the dot is emptied (Fig. 4.4c). In the second stage

(Fig. 4.4d), an electron tunnels into either |↓〉 or |↑〉. Again, due to the charging

energy only one electron can occupy the dot. The probability that it enters

|↓〉, A, does not depend on the pulse lengths, which are the only parameters we

change. If the electron entered |↓〉, the probability that it has not relaxed to |↑〉
after th is exp(-th/T1) (we assume exponential decay). Finally (Fig. 4.4e), if the

electron is in |↓〉, it can tunnel out, but only to the drain. In contrast, if the

electron is in |↑〉, it can tunnel out to either the source or the drain when the

cycle is restarted (Fig. 4.4c). Similarly, electrons entering the dot originate from

the source or the drain (Fig. 4.4d). Assuming that ΓS/ΓD is constant throughout

the cycle, the average current generated by electrons leaving the dot during the

”low” phase of the pulse train (Fig. 4.4c) is zero. Therefore the current only

consists of electrons that entered |↓〉 and have not relaxed during th:

I = efrep <n↓> = efrepCA e(−th/T1), (4.4)

where frep is the pulse repetition frequency and C a constant accounting for the

tunnel probability in the read-out stage. We determine <n↓> for different th.

Normalized to the value for th=0, it is a direct measure of spin relaxation:

<n↓>th=t

<n↓>th=0

=
CA e(−t/T1)

CA e(−0/T1)
=

P↓(t)
P↓(0)

= e(−t/T1) . (4.5)

To be able to extract reliable peak heights from the very small currents, we

average over many traces. Examples of averaged curves are shown in Fig. 4.4f

for th=1, 2.5 and 4 µs. In Fig. 4.4g, data extracted from these and similar curves

are plotted as a function of th, up to 7.5 µs. Longer waiting times result in

unmeasurably small currents (I ∝ 1/th). The two data sets shown were taken

with different gate settings (and thus different tunnel rates) and different tm. As

a guide to the eye, lines corresponding to an exponential decay with decay times

τ = 10 µs, τ = 30 µs and τ =∞ are included. There is no clear decay visible. We

fit the data in Fig. 4.4g and similar data, and average the resulting relaxation

rates. From an error analysis we find a lower bound of T1 > 50 µs. We emphasize
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Figure 4.4: One-electron spin relaxation studied using double-step pulses at 7.5T.
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that, since we do not observe a clear signature of relaxation in our experimental

time window, T1 might actually be much longer.

4.6 Back-action of the QPC

The lower bound we find for T1 is much longer than the time needed for read-

out of the quantum bit using proposed spin-to-charge conversion schemes [25]. In

these schemes, spin-dependent tunneling events correlate the charge on the dot to

the initial spin state. A subsequent charge measurement thus reveals information

on the spin. This can de done in our device using the QPC located next to the

QD (see Fig. 4.1a) [10].

An interesting question is how much the stability of the spin states is affected

by such charge measurements. We have studied this by sending a large cur-

rent through the QPC, set at maximum charge sensitivity, and repeating the T1

measurements. The drain lead is shared by the QPC- and the QD-current, which

causes some peak broadening and limits the experimental window. However, even

for a very large current of ∼20 nA through the QPC (µQ−µD =500 µeV ), we still

do not find a measurable decay of the spin. For comparison, we can measure the

charge on the QD within 50 µs using a QPC current of only 10 nA [29]. Taking

these measurements together shows that, by using spin-to-charge conversion, it

should be possible to perform single-shot spin readout in this device. In chapter 7

we will proceed on this path.
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Chapter 5

Few-electron quantum dot operated

as a bipolar spin filter

R. Hanson, L.M.K. Vandersypen, L.H. Willems van Beveren,
J.M. Elzerman, I.T. Vink, L.P. Kouwenhoven

In this chapter, we demonstrate spin filtering in a few-electron quantum dot.

In a large in-plane magnetic field, we observe the Zeeman splitting of the two-

electron spin triplet states. Also, the one-electron Zeeman splitting is clearly

resolved at both the zero-to-one and the one-to-two electron transition. Since

the spin of the electrons transmitted through the dot is opposite at these two

transitions, this device can be employed as an electrically tunable, bipolar spin

filter. Calculations and measurements show that higher-order tunnel processes

and spin-orbit interaction have a negligible effect on the polarization.

This chapter has been published in Physical Review B 70, 241304(R) (2004).
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5.1 Quantum dot as a bipolar spin filter

The spin degree of freedom of electrons has great potential as a carrier of clas-

sical information (spintronics) [1] and quantum information (spin quantum bits)

[2]. Spintronics requires a device that can filter electrons by their spin orien-

tation, i.e. a spin filter. As for quantum information, spin filters can be used

for initialization and read-out of spin quantum bits [2, 3]. Moreover, they are

an important ingredient of recent proposals to measure Bell’s inequalities with

entangled electron spins [4].

Much experimental progress has been made using magnetic semiconductors

as spin filters [5]. However, many recent proposals focus on spin filtering in a

two-dimensional electron gas (2DEG) [6, 7], since this allows easy integration

with other devices such as electron spin entanglers [4]. Spin-dependent electron

transport through a 2DEG with giant Zeeman splitting of the lowest 2D sub-

band was recently measured [8]. Also, quantum dots formed within 2DEGs have

been shown to act as spin filters, by utilizing universal conductance fluctuations

controlled by gate voltages [9], and via spin-dependent coupling to the leads in

a perpendicular magnetic field [10]. In the former case, the filtering efficiency

(up to 70% in Ref. [9]) and polarity rely on the chaotic character of the dot. In

the latter case, the formation of edge channels in the leads yields reproducible

spin-selectivity with a high efficiency, but the polarization always corresponds to

the ground state spin-orientation in the leads, and therefore the filter cannot be

bipolar. The same is true for quantum point contacts, which have been used as

unipolar spin filters [9, 11]. For most purposes, however, a filter is required which

is both bipolar and has a very high efficiency.

Recher et al. [6] proposed to employ the discrete spin-resolved energy levels

of a quantum dot for spin filtering in a 2DEG. The low-bias electron transport

through such a dot will be almost completely polarized if the Zeeman energy

is much larger than the thermal energy. Furthermore, for simple pair-wise spin

filling of orbital states, the polarization is opposite at any two transitions with

successive electron number. The filter polarity can thus easily be reversed by

changing gate voltages.

This spin filter has not been realized experimentally. The challenge is to

demonstrate spin-splitting of orbital levels in a quantum dot for successive elec-

tron transitions, and to show that electrons transported at these transitions carry

opposite spin. Direct measurement of the Zeeman splitting of the orbital states

at the 0↔1 electron transition was reported by two groups recently [12, 13]. In

dots containing more than one electron, Zeeman energy has, up to now, only been

observed indirectly, by comparing the energy shifts of the ground state induced
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by a magnetic field for successive electron numbers [14].

In this work, we study the spin states of a one- and two-electron quantum dot

directly, by applying a large magnetic field in the plane of the 2DEG. This field

induces a large Zeeman splitting, but has a negligible effect on the orbitals in the

dot. Due to the small size of the dot, the exact number of electrons is known

and the orbital energy levels are well separated. Thus, we can unambiguously

identify both the orbital and the spin part of the electron wave functions. Our

measurements clearly show Zeeman splitting of the two-electron triplet states.

Furthermore, we observe the single-electron Zeeman splitting at the 0↔1 electron

transition as well as at the 1↔2 transition. Since the two-electron ground state

is a spin-singlet, this implies that the spin orientation of transmitted electrons

is opposite at these two transitions. Thus, our measurements constitute the

demonstration of the spin filter proposed by Recher et al. The influence of higher-

order tunneling and spin-orbit interaction on the filter efficiency is discussed and

estimated both from calculations and measurements.

The quantum dot is defined in a GaAs/AlGaAs heterostructure, containing

a 2DEG 90 nm below the surface with an electron density ns = 2.9 × 1011 cm−2.

The measurements are performed in a dilution refrigerator at base temperature T

= 20 mK with a magnetic field B// applied in the plane of the 2DEG. The same

device was used in previous experiments on a one-electron dot [12]. The results

presented here were reproduced with a similar device fabricated on a wafer with

a 2DEG 60nm below the surface.

5.2 Filtering spin-up electrons

We first consider electron transport through the dot at the 0↔1 electron transi-

tion and show that current through the ground state is spin-polarized for B// �= 0.

Since the energy separation of the orbital levels (∆Eorb≈1.1 meV) in this device

is larger than the largest source-drain bias, eVSD, applied in the experiments,

the one-electron orbital excited states are ignored. The orbital ground state is

spin-degenerate at B// =0. In a finite magnetic field, the two spin states, parallel

(↑, or spin-up) and anti-parallel (↓, or spin-down) to the applied field, acquire a

different Zeeman energy and the orbital ground state splits: E↓=E↑+∆EZ , with

∆EZ =gµBB//.

Electron transport through the dot is governed by the electrochemical poten-

tial µ. Consider a transition between two states of the dot, state |a〉 with N

electrons and |b〉 with N+1 electrons. The corresponding electrochemical poten-

tial µa↔b is given by the difference between the total energy of the dot in state |a〉



62 Chapter 5. Few-electron quantum dot operated as a bipolar spin filter

a

�
S

�D�D

VG (V)

N=0

a

c

b

d
I/

d
V

S
D

+20

-5

-0.676 -0.683
0

1

V
S

D
(m

V
)

(n
S

)

II

ICB CB

N=1

0��

0��

0��

0��

0��

0��

b c

d

Figure 5.1: (a)-(c) Energy diagrams showing (a) spin filtering at the 0↔1 electron
transition, which can be lifted by either (b) changing the gate voltage, VG, or (c)
increasing the source-drain bias, VSD = (µS−µD)/e. (d) dI/dVSD as a function of VG

and VSD around the 0↔1 electron transition at B// = 12 T [16]. In the entire region
I the dot acts as a spin filter, allowing only spin-up electrons to flow through the dot.
Letters a-c indicate the level positions depicted by the diagrams in (a)-(c).

and in state |b〉: µa↔b = U(b) − U(a). Choosing the zero of energy conveniently,

this gives µ0↔↑=E↑ and µ0↔↓=E↓=E↑ + ∆EZ for the 0↔1 electron transitions.

The ladder of electrochemical potentials in the dot can be shifted relative to

the electrochemical potentials of the source (µS) and the drain (µD), by changing

the gate voltage VG: ∆µ ∝ ∆VG [15]. Since the electrochemical potentials all

depend in the same way on VG, the relative positions of the electrochemical

potentials are independent of VG. Thus, by tuning VG, we can selectively position

µ0↔↑ in the bias window (i.e. µS > µ0↔↑ > µD), allowing transport of electrons

through the dot via the ground state |↑〉 only. This situation is depicted in Fig.

5.1a. Since only electrons with spin-up can enter the dot, the dot acts here as

a spin filter. If the levels are pulled down by a change in VG (Fig. 5.1b), or if

the source-drain bias is increased (Fig. 5.1c), transport through the spin-excited

state |↓〉 becomes possible as well and the current is no longer spin-polarized.

Thus, in an energy window set by the Zeeman splitting, the current through

the device is carried, to first order, only by spin-up electrons, even though the
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leads are not spin-polarized. The influence of higher-order tunnel processes and

spin-orbit interaction on the spin polarization is discussed below.

Fig. 5.1d shows the differential conductance dI/dVSD around the 0↔1 elec-

tron transition at B// = 12 T. The lines of high dI/dVSD define four regions. In

the regions indicated by CB, Coulomb blockade prohibits first-order tunneling

and the number of electrons on the dot, N , is stable. Coulomb blockade is lifted

whenever µ0↔↑ is in the bias window, defining the V-shaped area of transport.

The Zeeman splitting between |↑〉 and |↓〉 is clearly resolved (∆EZ ≈ 240 µeV),

allowing us to identify the region where only spin-up electrons can enter the dot

(region I). In region II both spin-up and spin-down electrons can pass through

the dot. Thus, for all combinations of VG and VSD within region I, the dot acts

as a spin filter transmitting, to first order, only spin-up electrons.

5.3 Filtering spin-down electrons

Now we analyze the current at the 1↔2 electron transition and show that in this

case the dot filters the opposite spin. The ground state of a two-electron dot in

zero magnetic field is always a spin-singlet (total spin quantum number S = 0)

[17], formed by the two electrons occupying the lowest orbital with their spins

anti-parallel: |S 〉=(|↑↓〉−|↓↑〉)/√2. The first excited states are the spin-triplets

(S = 1), where the antisymmetry of the two-electron wave function requires one

electron to occupy a higher orbital. The three triplet states are degenerate at zero

magnetic field, but acquire different Zeeman energy shifts EZ in finite magnetic

fields because their spin z-components (quantum number mS) differ: mS = +1

for |T+〉= |↑↑〉, mS =0 for |T0 〉=(|↑↓〉+|↓↑〉)/√2 and mS =−1 for |T−〉= |↓↓〉.
The energies of the states can be expressed in terms of the single-particle

energies of the two electrons plus a charging energy EC which accounts for the

Coulomb interactions:

ES =E↑ + E↓ + EC = 2E↑ + ∆EZ + EC

ET+ =2E↑ + EST +EC

ET0 =E↑+E↓+EST +EC = 2E↑+EST +∆EZ +EC

ET− =2E↓+EST +EC = 2E↑+EST +2∆EZ +EC ,

with EST denoting the singlet-triplet energy difference in the absence of the Zee-

man splitting ∆EZ . EST is considerably smaller than the single-particle level

spacing ∆Eorb, because the occupation of different orbitals and exchange inter-

action reduce the Coulomb energy for the triplet states [15].
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Fig. 5.2a shows the possible transitions between the one-electron spin-split

orbital ground state and the two-electron states. We have omitted the transitions

↑↔T− and ↓↔T+, since these require a change in the spin z-component of more

than 1
2

and are thus spin-blocked [18]. From the energy diagram we can deduce the

electrochemical potential ladder, which is shown in Fig. 5.2b. Note that µ↑↔T+ =

µ↓↔T0 and µ↑↔T0 = µ↓↔T−. Consequently, the three triplet states change the first-

order transport through the dot at only two values of VSD. The reason is that the

first-order transport probes the energy difference between states with successive

electron number. In contrast, the onset of second-order (cotunneling) currents

is governed by the energy difference between states with the same number of

electrons. Therefore, the triplet states change the second-order (cotunneling)

currents at three values of VSD. In our measurements, these cotunneling currents

were too small to detect (see below).

In Fig. 5.3a we map out the positions of the electrochemical potentials as a

function of VG and VSD. For each transition, the two lines originating at VSD =

0 span a V-shaped region where the corresponding electrochemical potential is

in the bias window [16]. In the region labeled A, only transitions between the

one-electron ground state, |↑〉, and the two-electron ground state, |S 〉, are pos-

sible, since only µ↑↔S is positioned inside the bias window. Since this transition

corresponds to transport of spin-down electrons only, the dot again acts as a spin
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Figure 5.3: (a) Energetically allowed 1↔2 electron transitions as a function of VSD

and VG. The lines corresponding to ↑↔ S outline the region of transport; outside
this region, where lines are dashed, the dot is in Coulomb blockade. (b) dI/dVSD as
a function of VG and VSD around the 1↔2 electron transition at B// = 12 T. In the
region labeled A only spin-down electrons pass through the dot.

filter, but with a polarization opposite to the 0↔1 electron case. The polariza-

tion of the current is lost when µ↓↔S or µ↑↔T+ enters the bias window (regions

D an B respectively). In the regions C, E and F several more transitions are

possible which leads to a more complex, but still understandable behavior of the

current. Outside the V-shaped region spanned by the ground state transition

µ↑↔S, Coulomb blockade prohibits first order electron transport.

The experimental data, shown in Fig. 5.3b, is in excellent agreement with the

predictions of Fig. 5.3a. Three important observations can be made. First, we

clearly observe the Zeeman splitting of the triplet states. Second, the transitions
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between the one-electron states and the two-electron singlet ground state are

spin-resolved. Thus, we can easily identify the region where the current is carried

by spin-down electrons only, i.e. region A. The size of this region is determined

by the Zeeman energy (∆EZ ≈ 240µeV) and the singlet-triplet energy difference

(EST ≈ 520 µeV). The third observation is that the Zeeman energy, and there-

fore the g-factor, is the same for the one-electron states as for the two-electron

states, within measurement accuracy (≈5%). We note that the large variation in

differential conductance observed in Fig. 5.3b, can be completely explained by a

sequential tunneling model with spin- and orbital-dependent tunnel rates [19].

To achieve spin-down filtering at the 1↔2 electron transition, it is crucial

that the two-electron ground state is a spin-singlet. Indeed, in case of a triplet

ground state, the dot would transmit only spin-up electrons. We made sure that

the ground state of the two-electron dot at B// =12 T is still a spin-singlet state

by carefully monitoring the energies of the two-electron states from zero field,

where the ground state is always a spin-singlet [17]. Additionally, the line of high

dI/dVSD separating region A from D would not be present in case the ground

state would be a spin triplet. (This can be seen by redrawing the diagram in Fig.

5.3a for the case of a triplet ground state).

The data presented in Figs. 5.1d and 5.3b shows that our device can be

operated as a bipolar spin filter, as proposed by Recher et al. Switching between

the 0↔1 electron transition, where the polarization is spin-up, and the 1↔2

electron transition, where the polarization is spin-down, only requires adjusting

the gate voltages, which can already be done on a subnanosecond timescale [12].

5.4 Efficiency of the spin filter

In a sequential tunneling picture, the polarization of the first-order tunnel cur-

rent is, due to energy conservation, ≈100% whenever ∆EZ � kT (which is

easily fulfilled here). We now investigate the influence of tunneling via virtual

higher-energy states (second-order tunneling or cotunneling) [20] and of spin-orbit

coupling on the filter efficiency.

We first note that the cotunneling current Icot ∝ Γ2, whereas the first-order

tunneling current ∝ Γ and therefore cotunneling can always be suppressed by

making the tunnel rates small. We obtain an upper bound on the cotunneling

current by measuring the current in the Coulomb blockade region close to the

spin filter region. Here, the parameters for cotunneling are the same as those

in the spin filter region, but first-order tunneling is forbidden, allowing a direct

measurement of Icot. We find that for both the 0↔1 and the 1↔2 electron
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transition, Icot is smaller than the noise floor of our measurement (10−14 A).

Using values for the tunnel rates obtained from first-order tunneling, we can

also calculate Icot in the spin filter regions. For VSD < ∆EZ , only elastic cotunnel-

ing is possible [20]. At the 0↔1 electron transition, we find that Icot is ∼10−19A

in the middle of region I, whereas the sequential spin-up current is ∼ 10−13A.

At the 1↔2 electron transition, Icot ∼ 10−15A in the middle of region A. With

µ↑↔T+ far above µS, this reduces to 10−16A, which is more than three orders of

magnitude smaller than the sequential spin-down current (≈ 3 ·10−13A). Thus,

both the measurements and the calculations show that second-order tunneling

processes are negligible.

Due to spin-orbit coupling the eigenstates in the dot are not the pure spin

states |↑〉 and |↓〉, but each contains a small admixture of the opposite spin,

which limits the efficiency of the spin filter in the (↑,↓) basis. An upper bound on

the spin-orbit coupling can be derived from the spin-orbit mediated spin relax-

ation. The very low spin relaxation rates measured in our device, 2 MHz at 10 T

and 9 MHz at 14 T [12, 21], indicate that the reduction in efficiency is less than

10−4 [22]. We further note that the tunnel barriers are purely electrostatically

defined and should therefore not induce extra spin relaxation.

Future experiments will focus on measurement of the spin-polarization of the

current flowing out of the dot by an external analyzer. This can be done for

instance by focussing the current onto a quantum point contact [9], although

this technique has only allowed polarizations up to 70% to be measured. Al-

ternatively, we plan to investigate the filter properties by placing two dots in

series [23], such that the polarization configuration can be switched controllably

between parallel and antiparallel.

We thank D.P. DiVincenzo, C.M. Marcus, T. Fujisawa, S. Tarucha, T. Hayashi,

T. Saku, Y. Hirayama, A. Sachrajda, J.A. Folk, V.N. Golovach and R.N. Schouten

for discussions and help. This work was supported by the DARPA-QUIST pro-

gram, the ONR, FOM and the EU-RTN network on spintronics.
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[18] D. Weinmann, W. Häusler and B. Kramer, Phys. Rev. Lett. 74, 984 (1995).

[19] R. Hanson, I.T. Vink, D.P. DiVincenzo, L.M.K. Vandersypen, J.M. Elzer-

man, L.H. Willems van Beveren and L.P. Kouwenhoven., to be published in

the Proceedings of the XXXIXth Rencontres de Moriond (La Thuile, 2004)

“Quantum information and decoherence in nanosystems”; cond-mat/0407793.

[20] D.V. Averin and Y.V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).

[21] J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K.

Vandersypen and L.P. Kouwenhoven, Nature 430, 431 (2004).

[22] V.N. Golovach, A. Khaetskii and D. Loss, Phys. Rev. Lett. 93, 016601

(2004).

[23] K. Ono, D. G. Austing, Y. Tokura and S. Tarucha, Science 297, 1313 (2002).



70 Chapter 5. Few-electron quantum dot operated as a bipolar spin filter



Chapter 6

Excited-state spectroscopy on a nearly

closed quantum dot via charge detection

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren,
L. M. K. Vandersypen and L. P. Kouwenhoven

In this chapter, we demonstrate a method for measuring the discrete energy spec-

trum of a quantum dot connected very weakly to a single lead. A train of voltage

pulses applied to a metal gate induces tunneling of electrons between the quantum

dot and a reservoir. The effective tunnel rate depends on the number and nature

of the energy levels in the dot made accessible by the pulse. Measurement of the

charge dynamics thus reveals the energy spectrum of the dot, as demonstrated

for a dot in the few-electron regime.

This chapter has been published in Applied Physics Letters 84, 4617 (2004).
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6.1 Introduction

Few-electron quantum dots are considered as qubits for quantum circuits, where

the quantum bit is stored in the spin or orbital state of an electron in a single

or double dot. The elements in such a device must have functionalities such

as initialization, one- and two-qubit operations and read-out [1]. For all these

functions it is necessary to have precise knowledge of the qubit energy levels.

Standard spectroscopy experiments involve electron transport through the quan-

tum dot while varying both a gate voltage and the source-drain voltage [2]. This

requires that the quantum dot be connected to two leads with a tunnel coupling

large enough to obtain a measurable current [3].

Coupling to the leads unavoidably introduces decoherence of the qubit: even

if the number of electrons on the dot is fixed due to Coulomb blockade, an elec-

tron can tunnel out of the dot and be replaced by another electron through a

second-order tunneling process, causing the quantum information to be irretriev-

ably lost. Therefore, to optimally store qubits in quantum dots, higher-order

tunneling has to be suppressed, i.e. the coupling to the leads must be made

as small as possible. Furthermore, real-time observation of electron tunneling,

important for single-shot read-out of spin qubits via spin-to-charge conversion,

also requires a small coupling of the dot to the leads. In this regime, current

through the dot would be very hard or even impossible to measure. Therefore

an alternative spectroscopic technique is needed, which does not rely on electron

transport through the quantum dot.

Here we present spectroscopy measurements using charge detection. Our

method resembles experiments on superconducting Cooper-pair boxes and semi-

conductor disks which have only one tunnel junction so that no net current can

flow. Information on the energy spectrum can then be obtained by measuring the

energy for adding an electron or Cooper-pair to the box, using a single-electron

transistor (SET) operated as a charge detector [4, 5, 6]. We are interested in

the excitation spectrum for a given number of electrons on the box, rather than

the addition spectra. We use a quantum point contact (QPC) as an electrome-

ter [7] and excitation pulses with repetition rates comparable to the tunnel rates

to the lead, to measure the discrete energy spectrum of a nearly isolated one- and

two-electron quantum dot.

6.2 Tuning the tunnel barriers

The quantum dot and QPC are defined in the two-dimensional electron gas

(2DEG) in a GaAs/Al0.27Ga0.73As heterostructure by dc voltages on gates T, M, R
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Figure 6.1: QPC response to a pulse train applied to the plunger gate. (a) Scanning
electron micrograph of a quantum dot and quantum point contact, showing only the
gates used in the present experiment (the complete device is described in ref. [11]) and
chapter 2. (b) Pulse train applied to gate P . (c) Schematic response in QPC current,
∆IQPC , when the charge on the dot is unchanged by the pulse (solid line) or increased
by one electron charge during the ’high’ stage of the pulse (dashed). (d) Schematic
electrochemical potential diagrams during the high (left) and low (right) pulse stage,
when the ground state is pulsed across the Fermi level in the reservoir, EF .

and Q (Fig. 6.1a). The dot’s plunger gate, P , is connected to a coaxial cable, to

which we can apply voltage pulses (rise time 1.5 ns). The QPC charge detector

is operated at a conductance of about e2/h with source-drain voltage VSD = 0.2

mV. All data are taken with a magnetic field B// = 10 T applied in the plane of

the 2DEG, at an effective electron temperature of about 300 mK.

We first describe the procedure for setting the gate voltages such that tun-

neling in and out of the dot take place through one barrier only (i.e. the other

is completely closed), and the remaining tunnel rate be well controlled. For gate

voltages far away from a charge transition in the quantum dot, a pulse applied

to gate P (Fig. 6.1b) modulates the QPC current via the cross-capacitance only

(solid trace in Fig. 6.1c). Near a charge transition, the dot can become occupied

with an extra electron during the high stage of the pulse (Fig. 6.1d). The extra

electron on the dot reduces the current through the QPC. The QPC response to

the pulse is thus smaller when tunneling takes place (dotted trace in Fig. 6.1c).

We denote the amplitude of the difference between solid and dotted traces as the

’electron response’.

Now, even when tunneling is allowed energetically, the electron response is

only non-zero when an electron has sufficient time to actually tunnel into the dot
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Figure 6.2: Lock-in detection of electron tunneling. (a) Lock-in signal at f = 1/(2τ)
versus VM for different pulse times, τ , with VP = 1 mV. The dip due to the electron
response disappears for shorter pulses. (Individual traces have been lined up horizon-
tally to compensate for a fluctuating offset charge, and have been given a vertical offset
for clarity.) (Inset) Height of the dip versus τ , as a percentage of the maximum height
(obtained at long τ). Circles: experimental data. Dashed lines indicate the pulse time
(τ ≈ 120 µs) for which the dip size is half its maximum value. Solid line: calculated
dip height using Γ = (40 µs)−1. (b) Lock-in signal in grayscale versus VM and VR

for VP = 1 mV and f = 4.17 kHz. Dark lines correspond to dips as in (a), indicating
that the electron number changes by one. White labels indicate the absolute number of
electrons on the dot. (c) Same plot as in (b), but with larger pulse repetition frequency
(f = 41.7 kHz). (d) Same plot as in (b), but with smaller pulse repetition frequency
(f = 41.7 Hz).

during the pulse time, τ . By measuring the electron response as a function of τ ,

we can extract the tunnel rate, Γ, as demonstrated in Fig. 6.2a. We apply a pulse

train to gate P with equal up and down times, so the repetition rate is f = 1/(2τ)

(Fig. 6.1b). The QPC response is measured using lock-in detection at frequency

f [8], and is plotted versus the dc voltage on gate M . For long pulses (lowest

curves) the traces show a dip, which is due to the electron response when crossing
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the zero-to-one electron transition. Here, f � Γ and tunneling occurs quickly on

the scale of the pulse duration. For shorter pulses the dip gradually disappears.

We find analytically (see Appendix A) that the dip height is proportional to

1− π2/(Γ2τ 2 + π2), so the dip height should equal half its maximum value when

Γτ = π. From the data (inset to Fig. 6.2a), we find that this happens for τ ≈ 120

µs, giving Γ ≈ (40 µs)−1. Using this value for Γ in the analytical expression given

above, we obtain the solid line in the inset to Fig. 6.2a, which nicely matches the

measured data points.

We explore several charge transitions in Fig. 6.2b, which shows the lock-in

signal in grayscale for τ = 120 µs, i.e. f = 4.17 kHz. The slanted dark lines

correspond to dips as in Fig. 6.2a. From the absence of further charge transitions

past the topmost dark line, we obtain the absolute electron number starting from

zero. In the top left region of Fig. 6.2b, the right tunnel barrier (between gates

R and T ) is much more opaque than the left tunnel barrier (between M and T ).

Here, charge exchange occurs only with the left reservoir (indicated as ’reservoir’

in Fig. 6.1a). Conversely, in the lower right region charge is exchanged only with

the drain reservoir. In the middle region, indicated for the two-to-three electron

transition by an ellipse, both barriers are too opaque and no charge can flow into

or out of the dot during the 120 µs pulse; consequently the electron response

becomes zero and thus the dark line disappears. For shorter pulses, i.e. larger

pulse repetition frequency, the region where the dark line disappears becomes

wider (ellipse in Fig. 6.2c). For longer pulses the dark line reappears (Fig. 6.2d).

By varying the voltages on gates M and R, we can thus precisely set the tunnel

rate to the left or right reservoir for each charge transition.

6.3 Excited-state spectroscopy for N = 1

For spectroscopy measurements on a one-electron dot, we set the gate voltages

near the zero-to-one electron transition at the point indicated as � in Fig. 6.2b.

At this point, the dot is operated as a charge box, with all tunnel events occurring

through just a single barrier. The pulse repetition rate is set to 385 Hz, so that

the dip height is half its maximum value. The electron response is then very

sensitive to changes in the tunnel rate, which occur when an excited state becomes

accessible for tunneling.

Fig. 6.3a shows the electron response for a pulse amplitude larger than was

used for the data in Fig. 6.2. The dip now exhibits a shoulder on the right side

(indicated by ’b’), which we can understand as follows. Starting from the right

(N = 0), the dip develops as soon as the ground state (GS) is pulsed across the
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Figure 6.3: Excited-state spectroscopy in a one-electron dot. (a) Lock-in signal at
f = 385 Hz versus VM , with VP = 6 mV. The dip is half the maximum value (obtained
at low f and small VP ) from which we conclude that Γ ≈ 2.4 kHz. (b) Schematic
electrochemical potential diagrams for the case that only the GS is pulsed across EF .
(c) Idem when both the GS and an ES are pulsed across EF . (d) Derivative of the
lock-in signal with respect to VM , plotted as a function of VM and VP (individual traces
have been lined up to compensate for a fluctuating offset charge). The curve in (a) is
taken at the dotted line. The Zeeman energy splitting between the one-electron GS
(spin-up) and first ES (spin-down) is indicated by ∆EZ .

Fermi level EF and an electron can tunnel into the dot (Fig. 6.3b). As VM is made

less negative, we reach the point where both the GS and an excited state (ES)

are pulsed across EF (Fig. 6.3c). The effective rate for tunneling on the box is

now the sum of the rate for tunneling in the GS and for tunneling in the ES, and

as a result the dip becomes deeper (the electron response increases). When VM

is made even less negative, the one-electron GS lies below EF during both stages

of the pulse, so there is always one electron on the dot. The electron response is

now zero and the dip ends.

The derivative of a set of curves as in Fig. 6.3a is plotted in Fig. 6.3d. Three

lines are observed. The right vertical, dark line corresponds to the right flank of

the dip in Fig. 6.3a, the onset of tunneling to the GS. The slanted bright line

corresponds to the left flank of the dip in Fig. 6.3a (with opposite sign in the

derivative) and reflects the pulse amplitude. The second, weaker, but clearly
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visible dark vertical line represents an ES. The distance between the two vertical

lines is proportional to the energy difference between GS and ES.

We identify the ground and first excited state observed in this spectroscopy

experiment as the spin-up and spin-down state of a single electron on the quan-

tum dot. For B// = 10 T, the Zeeman energy is about 0.21 meV [9], while the

excitation energy of the first orbital excited state is of order 1 meV. The dis-

tance between the two vertical lines can, in principle, be converted to energy

and directly provide the spin excitation energy. However, it is difficult to deter-

mine independently the conversion factor between gate voltage and energy in this

regime of a nearly closed quantum dot. Instead we take the measured Zeeman

splitting from an earlier transport measurement [9] and deduce the conversion

factor from gate voltage to energy, α = 105 meV/V. This value will be used

below, to convert the two-electron data to energy.

6.4 Excited-state spectroscopy for N = 2

Fig. 6.4a shows pulse spectroscopy data for the one-to-two electron transition,

taken with the gate settings indicated by � in Fig. 6.2b. The rightmost vertical

line corresponds to transitions between the one-electron GS (spin-up) and the

two-electron GS (spin singlet) only. As VP is increased above 5 mV, the two-

electron ES (spin triplet) also becomes accessible, leading to an enhanced tunnel

rate [10]. This gives rise to the left vertical line, and the distance between the two

vertical lines corresponds to the singlet-triplet energy splitting ∆EST . Converted

to energy, we obtain ∆EST = 0.49 meV.

Excitations of the one-electron dot can be made visible at the one-to-two elec-

tron transition as well, by changing the pulse frequency to 1.538 kHz (Fig. 6.4b).

This is too fast for electrons to tunnel if only the GS is accessible, so the rightmost

line almost vanishes. However, a second slanted line becomes visible (indicated

by the arrow in Fig. 6.4b), corresponding not to an increased tunnel rate into the

dot (due to an N = 2 ES), but to an increased tunnel rate out of the dot (due to

an N = 1 ES). Specifically, if the pulse amplitude is sufficiently large, either the

spin-up or the spin-down electron can tunnel out of the two-electron dot. This is

explained schematically in Fig. 6.4c and d.

Similar experiments at the transition between two and three electrons, and

for tunnel rates to the reservoir ranging from 12 Hz to 12 kHz, yield similar

excitation spectra.

This work demonstrates that an electrometer such as a QPC can reveal not

only the charge state of a quantum dot, but also its tunnel coupling to the outside
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Figure 6.4: Excited state spectroscopy in a two-electron dot. (a) Similar to Fig. 6.3d,
but for the one-to-two electron transition. Again, f = 385 Hz. We clearly observe the
singlet-triplet splitting ∆EST (individual traces in (a) and (b) have been lined up).
(b) Same experiment but with f = 1.538 kHz, which increases the contrast for excited
states. An extra slanted line appears (arrow), corresponding to the N = 1 ES, spin-
down. (c) Schematic electrochemical potential diagram for the case that only the
spin-down electron can leave from the two-electron GS (spin singlet). This occurs to
the left of the bright line indicated by the arrow in (b). (d) Idem when either the
spin-up or the spin-down electron can leave from the spin singlet. This occurs to the
right of the arrow in (b), and leads to a larger effective tunnel rate.

world and the energy level spectrum of its internal states. We can thus access

all the relevant properties of a quantum dot, even when it is almost completely

isolated from the leads.
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Chapter 7

Single-shot read-out of a single electron

spin using a difference in energy

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren,
B. Witkamp, L. M. K. Vandersypen and L. P. Kouwenhoven

Spin is a fundamental property of all elementary particles. Classically it can be

viewed as a tiny magnetic moment, but a measurement of an electron spin along

the direction of an external magnetic field can have only two outcomes [1]: paral-

lel or anti-parallel to the field. This discreteness reflects the quantum mechanical

nature of spin. Ensembles of many spins have found diverse applications rang-

ing from magnetic resonance imaging [2] to magneto-electronic devices [3], while

individual spins are considered as carriers for quantum information. Read-out of

single spin states has been achieved using optical techniques [4], and is within

reach of magnetic resonance force microscopy [5]. However, electrical read-out

of single spins [6, 7, 8, 9, 10, 11, 12, 13] has so far remained elusive. Here, we

demonstrate electrical single-shot measurement of the state of an individual elec-

tron spin in a semiconductor quantum dot [14]. We use spin-to-charge conversion

of a single electron confined in the dot, and detect the single-electron charge using

a quantum point contact; the spin measurement visibility is ∼ 65%. Furthermore,

we observe very long single-spin energy relaxation times (up to ∼ 0.85 ms at a

magnetic field of 8 Tesla), which are encouraging for the use of electron spins as

carriers of quantum information.

This chapter has been published in Nature 430, 431 (2004).

81
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7.1 Measuring electron spin in quantum dots

In quantum dot devices, single electron charges are easily measured. Spin states

in quantum dots, however, have only been studied by measuring the average sig-

nal from a large ensemble of electron spins [17, 18, 19, 20, 21, 22]. In contrast,

the experiment presented here aims at a single-shot measurement of the spin

orientation (parallel or antiparallel to the field, denoted as spin-↑ and spin-↓,
respectively) of a particular electron; only one copy of the electron is available,

so no averaging is possible. The spin measurement relies on spin-to-charge con-

version [20, 21] followed by charge measurement in a single-shot mode [15, 16].

Fig. 7.1a schematically shows a single electron spin confined in a quantum dot

(circle). A magnetic field is applied to split the spin-↑ and spin-↓ states by the

Zeeman energy. The dot potential is then tuned such that if the electron has

spin-↓ it will leave, whereas it will stay on the dot if it has spin-↑. The spin state

has now been correlated with the charge state, and measurement of the charge

on the dot will reveal the original spin state.

This concept is implemented using a structure [23] (Fig. 7.1b) consisting of a

quantum dot in close proximity to a quantum point contact (QPC). The quantum

dot is used as a box to trap a single electron, and the QPC is operated as a

charge detector in order to determine whether the dot contains an electron or

not. The quantum dot is formed in the two-dimensional electron gas (2DEG)

of a GaAs/AlGaAs heterostructure by applying negative voltages to the metal

surface gates M , R, and T . This depletes the 2DEG below the gates and creates

a potential minimum in the centre, that is, the dot (indicated by a dotted white

circle). We tune the gate voltages such that the dot contains either zero or one

electron (which we can control by the voltage applied to gate P ). Furthermore,

we make the tunnel barrier between gates R and T sufficiently opaque that the

dot is completely isolated from the drain contact on the right. The barrier to

the reservoir on the left is set [24] to a tunnel rate Γ ≈ (0.05 ms)−1. When

an electron tunnels on or off the dot, it changes the electrostatic potential in

its vicinity, including the region of the nearby QPC (defined by R and Q). The

QPC is set in the tunnelling regime, so that the current, IQPC, is very sensitive to

electrostatic changes [25]. Recording changes in IQPC thus permits us to measure

on a timescale of about 8 µs whether an electron resides on the dot or not [26]. In

this way the QPC is used as a charge detector with a resolution much better than

a single electron charge and a measurement timescale almost ten times shorter

than 1/Γ.

The device is placed inside a dilution refrigerator, and is subject to a magnetic

field of 10 T (unless noted otherwise) in the plane of the 2DEG. The measured
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Figure 7.1: Spin-to-charge conversion in a quantum dot coupled to a quantum point
contact. (a) Principle of spin-to-charge conversion. The charge on the quantum dot,
Qdot, remains constant if the electron spin is ↑, whereas a spin-↓ electron can escape,
thereby changing Qdot. (b) Scanning electron micrograph of the metallic gates on the
surface of a GaAs/Al0.27Ga0.73As heterostructure containing a two-dimensional electron
gas (2DEG) 90 nm below the surface. The electron density is 2.9 × 1015 m−2. (Only
the gates used in the present experiment are shown, the complete device is described in
Ref. [23].) Electrical contact is made to the QPC source and drain and to the reservoir
via Ohmic contacts. With a source-drain bias voltage of 1 mV, IQPC is about 30 nA,
and an individual electron tunnelling on or off the dot changes IQPC by ∼ 0.3 nA.
The QPC-current is sent to a room temperature current-to-voltage convertor, followed
by a gain 1 isolation amplifier, an AC-coupled 40 kHz SRS650 low-pass filter, and is
digitized at a rate of 2.2 × 106 samples/s. With this arrangement, the step in IQPC

resulting from an electron tunnelling is clearly larger than the rms noise level, provided
it lasts at least 8 µs. A magnetic field, B, is applied in the plane of the 2DEG.

Zeeman splitting in the dot [21], ∆EZ ≈ 200µeV, is larger than the thermal

energy (25 µeV) but smaller than the orbital energy level spacing (1.1 meV) and

the charging energy (2.5 meV).

7.2 Two-level pulse technique

To test our single-spin measurement technique, we use an experimental procedure

based on three stages: 1) empty the dot, 2) inject one electron with unknown

spin, and 3) measure its spin state. The different stages are controlled by voltage

pulses on gate P (Fig. 7.2a), which shift the dot’s energy levels (Fig. 7.2c). Before

the pulse the dot is empty, as both the spin-↑ and spin-↓ levels are above the

Fermi energy of the reservoir, EF . Then a voltage pulse pulls both levels below
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Figure 7.2: Two-level pulse technique used to inject a single electron and measure its
spin orientation. (a) Shape of the voltage pulse applied to gate P . The pulse level is
10 mV during twait and 5 mV during tread (which is 0.5 ms for all measurements). (b)
Schematic QPC pulse-response if the injected electron has spin-↑ (solid line) or spin-↓
(dotted line; the difference with the solid line is only seen during the read-out stage).
Arrows indicate the moment an electron tunnels into or out of the quantum dot. (c)
Schematic energy diagrams for spin-↑ (E↑) and spin-↓ (E↓) during the different stages
of the pulse. Black vertical lines indicate the tunnel barriers. The tunnel rate between
the dot and the QPC-drain on the right is set to zero. The rate between the dot and
the reservoir on the left is tuned to a specific value, Γ. If the spin is ↑ at the start of the
read-out stage, no change in the charge on the dot occurs during tread. In contrast, if
the spin is ↓, the electron can escape and be replaced by a spin-↑ electron. This charge
transition is detected in the QPC-current (dotted line inside red circle in (b)).
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EF . It is now energetically allowed for an electron to tunnel onto the dot, which

will happen after a typical time ∼ Γ−1. The particular electron can have spin-↑
(shown in the lower diagram) or spin-↓ (upper diagram). (The tunnel rate for

spin-↑ electrons is expected to be larger than that for spin-↓ electrons [27], i.e.

Γ↑ > Γ↓, but we do not assume this a priori.) During this stage of the pulse,

lasting twait, the electron is trapped on the dot and Coulomb blockade prevents a

second electron to be added. After twait the pulse is reduced, in order to position

the energy levels in the read-out configuration. If the electron spin is ↑, its energy

level is below EF , so the electron remains on the dot. If the spin is ↓, its energy

level is above EF , so the electron tunnels to the reservoir after a typical time

∼ Γ−1
↓ . Now Coulomb blockade is lifted and an electron with spin-↑ can tunnel

onto the dot. This occurs on a timescale ∼ Γ−1
↑ (with Γ = Γ↑ + Γ↓). After tread,

the pulse ends and the dot is emptied again.

The expected QPC-response, ∆IQPC, to such a two-level pulse is the sum of

two contributions (Fig. 7.2b). First, due to a capacitive coupling between pulse-

gate and QPC, ∆IQPC will change proportionally to the pulse amplitude. Thus,

∆IQPC versus time resembles a two-level pulse. Second, ∆IQPC tracks the charge

on the dot, i.e. it goes up whenever an electron tunnels off the dot, and it goes

down by the same amount when an electron tunnels on the dot. Therefore, if the

dot contains a spin-↓ electron at the start of the read-out stage, ∆IQPC should go

up and then down again. We thus expect a characteristic step in ∆IQPC during

tread for spin-↓ (dotted trace inside red circle). In contrast, ∆IQPC should be flat

during tread for a spin-↑ electron. Measuring whether a step is present or absent

during the read-out stage constitutes our spin measurement.

7.3 Tuning the quantum dot into the read-out

configuration

To perform spin read-out, VM has to be fine-tuned so that the position of the

energy levels with respect to EF is as shown in Fig. 7.2c. To find the correct

settings, we apply a two-level voltage pulse and measure the QPC-response for

increasingly negative values of VM (Fig. 7.3a). Four different regions in VM can

be identified (separated by white dotted lines), with qualitatively different QPC-

responses. The shape of the typical QPC-response in each of the four regions

(Fig. 7.3b) allows us to infer the position of E↑ and E↓ with respect to EF during

all stages of the pulse (Fig. 7.3c).

In the top region, the QPC-response just mimics the applied two-level pulse,

indicating that here the charge on the dot remains constant throughout the pulse.
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Figure 7.3: Tuning the quantum dot into the spin read-out configuration. We apply a
two-stage voltage pulse as in Fig. 7.2a (twait = 0.3 ms, tread = 0.5 ms), and measure the
QPC-response for increasingly negative values of VM . (a) QPC-response (in colour-
scale) versus VM . Four different regions in VM can be identified (separated by white
dotted lines), with qualitatively different QPC-responses. (b) Typical QPC-response
in each of the four regions. This behaviour can be understood from the energy levels
during all stages of the pulse. (c) Schematic energy diagrams showing E↑ and E↓ with
respect to EF before and after the pulse (blue), during twait (orange) and during tread

(purple), for four values of VM . For the actual spin read-out experiment, VM is set to
the optimum position (indicated by the arrow in a).

This implies that E↑ remains below EF for all stages of the pulse, thus the dot

remains occupied with one electron. In the second region from the top, tunnelling

occurs, as seen from the extra steps in ∆IQPC . The dot is empty before the pulse,

then an electron is injected during twait, which escapes after the pulse. This

corresponds to an energy level diagram similar to before, but with E↑ and E↓
shifted up due to the more negative value of VM in this region. In the third region

from the top, an electron again tunnels on the dot during twait, but now it can
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escape already during tread, irrespective of its spin. Finally, in the bottom region

no electron-tunneling is seen, implying that the dot remains empty throughout

the pulse.

Since we know the shift in VM corresponding to shifting the energy levels by

∆EZ , we can set VM to the optimum position for the spin read-out experiment

(indicated by the arrow). For this setting, the energy levels are as shown in

Fig. 7.2c, i.e. EF is approximately in the middle between E↑ and E↓ during the

read-out stage.

7.4 Single-shot read-out of one electron spin

Fig. 7.4a shows typical experimental traces of the pulse-response recorded after

proper tuning of the DC gate voltages (see Fig. 7.3). We emphasize that each

trace involves injecting one particular electron on the dot and subsequently mea-

suring its spin state. Each trace is therefore a single-shot measurement. The

traces we obtain fall into two different classes; most traces qualitatively resemble

the one in the top panel of Fig. 7.4a, some resemble the one in the bottom panel.

These two typical traces indeed correspond to the signals expected for a spin-↑
and a spin-↓ electron (Fig. 7.2b), a strong indication that the electron in the

top panel of Fig. 7.4a was spin-↑ and in the bottom panel spin-↓. The distinct

signature of the two types of responses in ∆IQPC permits a simple criterion for

identifying the spin [28]: if ∆IQPC goes above the threshold value (red line in

Fig. 7.4a and chosen as explained below), we declare the electron ‘spin-down’;

otherwise we declare it ‘spin-up’. Fig. 7.4b shows the read-out section of twenty

more ‘spin-down’ traces, to illustrate the stochastic nature of the tunnel events.

The random injection of spin-↑ and spin-↓ electrons prevents us from checking

the outcome of any individual measurement. Therefore, in order to further es-

tablish the correspondence between the actual spin state and the outcome of our

spin measurement, we change the probability to have a spin-↓ at the beginning

of the read-out stage, and compare this with the fraction of traces in which the

electron is declared ‘spin-down’. As twait is increased, the time between injection

and read-out, thold, will vary accordingly (thold ≈ twait). The probability for the

spin to be ↓ at the start of tread will thus decay exponentially to zero, since elec-

trons in the excited spin state will relax to the ground state (kBT << ∆EZ).

For a set of 15 values of twait we take 625 traces for each twait, and count the

fraction of traces in which the electron is declared ‘spin-down’ (Fig. 7.4c). The

fact that the expected exponential decay is clearly reflected in the data confirms

the validity of the spin read-out procedure.



88 Chapter 7. Read-out of a single electron spin using a difference in energy

�
I Q

P
C

(n
A

)

0

1

2

0.0 0.5 1.0 1.5

SPIN-
UP

twait

a
�

I Q
P

C
(n

A
)

0

1

2

Time (ms)

SPIN-
DOWN

b

�
I Q

P
C

(n
A

)

Time (ms)

0.4 0.8

Time (ms)

0.4 0.8

1

2

3

4

5

6

0

0.5 1.0 1.50.0

Waiting time (ms)

S
p
in

-d
o
w

n
fr

a
c
ti
o
n

0.1

0.2

0.3

B = 10 T

c

B (T)

T
1
(m

s
)

8 10 12 14
0.0

0.5

1.0

0.0 0.5 1.0 1.5

Time (ms)
2.0

�
I Q

P
C

(n
A

)

0

1

2
d

tread

thold

tdetect

Figure 7.4: Single-shot read-out of one electron spin. (a) Time-resolved QPC mea-
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traces (for twait = 0.1 ms). Only the read-out segment is shown, and traces are offset
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make the histogram in Fig. 7.7a. (c) Fraction of ‘spin-down’ traces versus twait, out of
625 traces for each waiting time. Open dot: spin-down fraction using modified pulse
shape (d). Red solid line: exponential fit to the data. Inset: T1 versus B. (d) Typi-
cal QPC-signal for a ‘reversed’ pulse, with the same amplitudes as in Fig. 7.2a, but a
reversed order of the two stages. The red threshold is used to obtain the open dot in
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at 14 T.

As an extra check that the observed decay is due to spin relaxation, we ap-

ply a pulse waveform where the two pulse stages are reversed (Fig. 7.4d). In

this case injection takes place with E↑ below and E↓ above EF (see Fig. 7.2c,

third column), so that always a spin-↑ electron is injected. By comparing the

signal with a threshold (red line in Fig. 7.4d) as before, we find the fraction

of spin-↑ electrons that is measured to be ‘spin-down’, which is nonzero due to

measurement inaccuracy (see below). This fraction, indicated by the open dot

in Fig. 7.4c, agrees very well with the value found for the longest waiting time

(1.5 ms), demonstrating that here the electrons with spin-↓ indeed have relaxed

to spin-↑.
We extract a single-spin energy relaxation time, T1, from fitting the datapoints

in Fig. 7.4c (and two other similar measurements) to α + C exp(−twait/T1), and

obtain an average value of T1 ≈ (0.55± 0.07) ms at 10 Tesla. This is an order of

magnitude longer than the lower bound on T1 established earlier [21], and clearly

longer than the time needed for the spin measurement (of order 1/Γ↓ ≈ 0.11

ms). A similar experiment at 8 Tesla gives T1 ≈ (0.85 ± 0.11) ms and at 14

Tesla we find T1 ≈ (0.12 ± 0.03) ms (Fig. 7.5). More experiments are needed

in order to test the theoretical prediction that relaxation at high magnetic fields

is dominated by spin-orbit interactions [29, 30, 31], with smaller contributions

resulting from hyperfine interactions with the nuclear spins [29, 32] (cotunnelling

is insignificant given the very small tunnel rates). We note that the obtained

values for T1 refer to our entire device under active operation: i.e. a single spin

in a quantum dot subject to continuous charge detection by a QPC.
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7.5 Measurement fidelity

For applications in quantum information processing it is important to know the

accuracy, or fidelity, of the single-shot spin read-out. The measurement fidelity

is characterised by two parameters, α and β (inset to Fig. 7.7a), which we now

determine for the data taken at 10 T.

The parameter α corresponds to the probability that the QPC-current exceeds

the threshold even though the electron was actually spin-↑, for instance due to

thermally activated tunnelling or electrical noise (similar to ‘dark counts’ in a

photon detector). The combined probability for such processes is given by the

saturation value of the exponential fit in Fig. 7.4c, α, which depends on the

value of the threshold current. We analyse the data in Fig. 7.4c using different

thresholds, and plot α in Fig. 7.7b.

The parameter β corresponds to the probability that the QPC-current stays

below the threshold even though the electron was actually spin-↓ at the start of

the read-out stage. Unlike α, β cannot be extracted directly from the exponential

fit (note that the fit parameter C = p(1 − α − β) contains two unknowns: p =

Γ↓/(Γ↑+Γ↓) and β). We therefore estimate β by analysing the two processes that

contribute to it. First, a spin-↓ electron can relax to spin-↑ before spin-to-charge
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Figure 7.7: Measurement fidelity. (a) Histogram showing the distribution of detection
times, tdetect, in the read-out stage (see Fig. 7.4b for definition tdetect). The exponential
decay is due to spin-↓ electrons tunnelling out of the dot (rate = Γ↓) and due to spin
flips during the read-out stage (rate = 1/T1). Solid line: exponential fit with a decay
time (Γ↓ + 1/T1)−1 of 0.09 ms. Given that T1 = 0.55 ms, this yields Γ−1

↓ ≈ 0.11 ms.
Inset: fidelity parameters. A spin-↓ electron is declared ‘down’ (d) or ‘up’ (u) with
probability 1 − β or β, respectively. A spin-↑ electron is declared ‘up’ or ‘down’ with
probability 1 − α or α, respectively. (b) Open squares represent α, obtained from the
saturation value of exponential fits as in Fig. 7.4c for different values of the read-out
threshold. A current of 0.54 nA (0.91 nA) corresponds to the average value of ∆IQPC

when the dot is occupied (empty) during tread. Open diamonds: measured fraction
of ‘reverse-pulse’ traces in which ∆IQPC crosses the injection threshold (blue line in
Fig. 7.4d). This fraction approximates 1−β2, where β2 is the probability of identifying
a spin-↓ electron as ‘spin-up’ due to the finite bandwidth of the measurement setup.
Filled circles: total fidelity for the spin-↓ state, 1− β, calculated using β1 = 0.17. The
vertical dotted line indicates the threshold for which the visibility 1−α−β (separation
between filled circles and open squares) is maximal. This threshold value of 0.73 nA is
used in the analysis of Fig. 7.4.

conversion takes place. This occurs with probability β1 = 1/(1 + T1Γ↓). From a

histogram (Fig. 7.7a) of the actual detection time, tdetect (see Fig. 7.4b), we find

Γ−1
↓ ≈ 0.11 ms, yielding β1 ≈ 0.17. Second, if the spin-↓ electron does tunnel

off the dot but is replaced by a spin-↑ electron within about 8 µs, the resulting

QPC-step is too small to be detected. The probability that a step is missed,

β2, depends on the value of the threshold. It can be determined by applying a

modified (‘reversed’) pulse (Fig. 7.4d). For such a pulse, we know that in each

trace an electron is injected in the dot, so there should always be a step at the

start of the pulse. The fraction of traces in which this step is nevertheless missed,
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i.e. ∆IQPC stays below the threshold (blue line in Fig. 7.4d), gives β2. We plot

1−β2 in Fig. 7.7b (open diamonds). The resulting total fidelity for spin-↓ is given

by 1− β ≈ (1− β1)(1− β2) + (αβ1). The last term accounts for the case when a

spin-↓ electron is flipped to spin-↑, but there is nevertheless a step in ∆IQPC due

to the dark-count mechanism [33]. In Fig. 7.7b we also plot the extracted value

of 1 − β as a function of the threshold.

We now choose the optimal value of the threshold as the one for which the

visibility 1 − α − β is maximal (vertical line in Fig. 7.7b). For this setting,

α ≈ 0.07, β1 ≈ 0.17, β2 ≈ 0.15, so the measurement fidelity for the spin-↑ and

the spin-↓ state is ∼ 0.93 and ∼ 0.72 respectively. The measurement visibility in

a single-shot measurement is thus at present 65%.

Significant improvements in the spin measurement visibility can be made by

lowering the electron temperature (smaller α) and especially by making the charge

measurement faster (smaller β). Already, the demonstration of single-shot spin

read-out and the observation of T1 of order 1 ms are encouraging results for the

use of electron spins as quantum bits.
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Chapter 8

Single-shot read-out of two-electron spin

states using spin-dependent tunnel rates

R. Hanson, L. H. Willems van Beveren, I. T. Vink,
J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens,

L. P. Kouwenhoven and L. M. K. Vandersypen

We present a method for reading out the spin state of electrons in a quantum

dot that is robust against charge noise and can still be used when the electron

temperature exceeds the energy splitting between the states. A spin dependence

of the tunnel rates is used to correlate the spin states to different charge states.

A subsequent fast measurement of the charge on the dot then reveals the original

spin state. We experimentally demonstrate the method by performing read-out of

the two-electron spin states, achieving a single-shot visibility of more than 80%.

We find very long triplet-to-singlet relaxation times (up to several milliseconds),

with an in-plane magnetic field dependence consistent with spin-orbit coupling

as the dominant source of relaxation.

This chapter has been submitted to Physical Review Letters. See also
http://xxx.lanl.gov/abs/cond-mat/0412768 (2004).
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8.1 Single-shot spin read-out using spin-dependent

tunnel rates

The magnetic moment associated with the electron spin is tiny and therefore

hard to measure directly. However, by correlating the spin states to different

charge states and subsequently measuring the charge on the dot, the spin state

can be determined [1]. Such a spin-to-charge conversion can be achieved by posi-

tioning the spin levels around the electrochemical potential of the reservoir µres

as depicted in Fig. 8.1a, such that one electron can tunnel off the dot from the

spin excited state, |ES 〉, whereas tunneling from the ground state, |GS 〉, is en-

ergetically forbidden. By combining this scheme with a fast (40 kHz bandwidth)

measurement of the charge dynamics, we have recently performed read-out of the

spin orientation of a single electron, with a single-shot visibility up to 65% [2]

(see chapter 7). (A conceptionally similar scheme has also allowed single-shot

read-out of a superconducting charge qubit [3]). However, this energy-selective

read-out (E-RO) has three drawbacks: (i) E-RO requires an energy splitting of

the spin states larger than the thermal energy of the electrons in the reservoir.

Thus, for a single spin the read-out is only effective at very low electron tem-

perature and high magnetic fields (8 T and higher in Ref. [2]). Also, interesting

effects occurring close to degeneracy, e.g. near the singlet-triplet crossing for two

electrons [4], can not be probed. (ii) Since the E-RO relies on precise positioning

of the spin levels with respect to the reservoir, it is very sensitive to fluctuations

in the electrostatic potential. Background charge fluctuations [5], active even in

today’s most stable devices, can easily push the levels out of the read-out configu-

ration. (iii) High-frequency noise can spoil the E-RO by inducing photon-assisted

tunneling from the spin ground state to the reservoir. Since the QPC is a source

of shot noise, this limits the current through the QPC and thereby the bandwidth

of the charge detection [6]. A different read-out method is desired that does not

suffer from these constraints.

In this work, we present a spin read-out scheme where spin-to-charge conver-

sion is achieved by exploiting the difference in tunnel rates of the different spin

states to the reservoir [7]. We outline the concept of this tunnel-rate selective

read-out (TR−RO) in Fig. 8.1b. Assume that the tunnel rate from the spin ex-

cited state |ES 〉 to the reservoir, ΓES, is much higher than the tunnel rate from

|GS 〉, ΓGS, i.e. ΓES � ΓGS. Then, we can read out the spin state as follows.

At time t=0, we position the levels of both |ES 〉 and |GS 〉 far above the elec-

trochemical potential of the reservoir µres, so that one electron is energetically

allowed to tunnel off the dot regardless of the spin state. Then, at a time t = τ ,
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Figure 8.1: (a)-(b) Energy diagrams explaining two schemes for spin-to-charge con-
version. (a) Energy-selective read-out (E-RO). Tunneling is energetically allowed from
|ES 〉 (left diagram), but not from |GS 〉 (right diagram). (b) Tunnel rate-selective
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function of spin relaxation time T1 and the ratio ΓES/ΓGS , for ΓGS = 2.5 kHz. The
diamond corresponds to the read-out parameters of Fig. 8.2e. Inset: definition of the
error rates α and β. If the initial state is |GS 〉, there is a probability α that the
measurement gives the wrong outcome, i.e. ′ES′ (β is defined similarly).

where Γ−1
GS � τ � Γ−1

ES, an electron will have tunneled off the dot with a very

high probability if the state was |ES 〉, but most likely no tunneling will have oc-

curred if the state was |GS 〉. Thus, the spin information is converted to charge

information, and a measurement of the number of electrons on the dot reveals

the original spin state.

A major advantage of this TR-RO scheme is that it does not rely on a large

energy splitting between the spin states. Furthermore, it is robust against back-

ground charge fluctuations, since these cause only a small variation in the tunnel

rates (of order 10−3 in Ref. [5]). Finally, photon-assisted tunneling is not im-

portant since here tunneling is energetically allowed regardless of the initial spin

state. Thus, we see that TR-RO can overcome the limitations of E-RO.
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8.2 Measurement visibility of the read-out

We first analyze the fidelity of the TR-RO theoretically using the error rates α

and β as defined in the diagram of Fig. 8.1c (inset). Here, α is the probability

that one electron has tunneled even though the initial state was |GS 〉, and β the

probability that no tunneling has occurred even though the initial state was |ES 〉.
The charge measurement itself is assumed to be perfect, and spin relaxation from

|ES 〉 to |GS 〉 is modeled by a rate 1/T1. We find analytically

α = 1 − e−ΓGS ·τ , (8.1)

β =
(1/T1)e

−ΓGS ·τ + (ΓES−ΓGS) e−(ΓES+1/T1)·τ

ΓES + 1/T1 − ΓGS
, (8.2)

where τ is the time at which we measure the number of electrons N [8]. The

visibility of the read-out is 1−α−β.

The optimal value for the read-out time for given values of T1 and the ratio

ΓT /ΓS, τmax, is found by solving d(visibility)/dτ = 0 for τ . We find

τmax =
1

ΓES+1/T1−ΓGS

ln

(
ΓES + 1/T1

ΓGS

)
. (8.3)

Inserting this expression into equations 8.1 and 8.2 yields the maximum visibility.

In Fig. 8.1c we plot the visibility for τ = τmax as a function of T1 and the

ratio of the tunnel rates ΓES/ΓGS. (Here, ΓGS is chosen to be 2.5 kHz, which is

well within the bandwidth of our charge detection set up [6].) We see that for

ΓES/ΓGS = 10 and T1 = 0.5 ms, the visibility is 65%, equal to the visibility

obtained with E-RO in Ref. [2] for the same T1. For ΓES/ΓGS > 60 and T1 =

0.5 ms, the visibility of TR-RO exceeds 90%.

The TR-RO can be used in a similar way if ΓES is much lower than ΓGS. The

visibility for this case can be calculated simply by replacing α and β in Eqs. 8.1-

8.2 with 1 − α and 1 − β respectively. Significant differences with the values in

Fig. 8.1c arise only in the limit T1 � Γ−1
ES.

The main ingredient necessary for TR-RO is a spin dependence in the tunnel

rates. For a single electron, this spin dependence can be obtained in the Quantum

Hall regime, where a high spin-selectivity is induced by the spatial separation of

spin-resolved edge channels [9, 10]. TR-RO can also be used for read-out of a

two-electron dot, where the electrons are either in the spin-singlet ground state,

denoted by |S 〉, or in a spin-triplet state, denoted by |T 〉. In |S 〉, the two

electrons both occupy the lowest orbital, but in |T 〉 one electron is in the first

excited orbital. Since the wave function in this excited orbital has more weight

near the edge of the dot [11], the coupling to the reservoir is stronger than for
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the lowest orbital. Therefore, the tunnel rate from a triplet state to the reservoir

ΓT is much larger than the rate from the singlet state ΓS, i.e. ΓT � ΓS [13]. We

use this spin-dependence in the following to experimentally demonstrate TR-RO

for two electrons.

8.3 Single-shot read-out of the two-electron spin

states

A quantum dot (white dotted circle in Fig. 8.2a) and a QPC are defined in a two-

dimensional electron gas (2DEG) with an electron density of 4 ·1015 m−2), 60 nm

below the surface of a GaAs/AlGaAs heterostructure from Sumitomo Electric, by

applying negative voltages to gates L, M , T and Q. Gate P is used to apply fast

voltage pulses. We completely pinch off the tunnel barrier between gates L and

T , so that the dot is only coupled to the reservoir on the right. The conductance

of the QPC is tuned to about e2/h, making it very sensitive to the number of

electrons on the dot. A voltage bias of 0.8 mV induces a current through the

QPC, IQPC , of about 30 nA.

We tune the dot to the N = 1↔ 2 transition in a small parallel field B// of

0.02 T. Here, the energy difference between |T 〉 and the ground state |S 〉, EST ,

is about 1 meV. From measurements of the tunnel rates [12], we estimate the

ratio ΓT /ΓS to be on the order of 20. A similar ratio was found previously in

transport measurements on a different device [13]. As can be seen in Fig. 8.1c,

for T1 >1 ms this permits a read-out visibility>80%.

We implement the TR-RO by applying voltage pulses as depicted in Fig. 8.2b

to gate P . Figure 8.2c shows the expected response of IQPC to the pulse, together

with the level diagrams in the three different stages. Before the pulse starts, there

is one electron on the dot. Then, the pulse pulls the levels down so that a second

electron can tunnel onto the dot (N =1→2), forming either a singlet or a triplet

state with the first electron. The probability that a triplet state is formed is

given by 3ΓT /(ΓS + 3ΓT ), where the factor of 3 is due to the degeneracy of the

triplets. After a variable waiting time twait, the pulse ends and the read-out

process is initiated, during which one electron can leave the dot again. The rate

for tunneling off depends on the two-electron state, resulting in the desired spin-

to-charge conversion. The QPC is used to detect the number of electrons on

the dot. Due to the direct capacitive coupling of gate P to the QPC channel,

∆IQPC follows the pulse shape. Tunneling of an electron on or off the dot gives

an additional step in ∆IQPC [2, 6, 14], as indicated by the arrows in Fig. 8.2c.

Now, ΓS is tuned to 2.5 kHz, and ΓT is therefore ≈ 50 kHz. In order to
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graph of a device as used in the experiments. (b) Pulse waveform applied to gate P.
(c) Response of the QPC-current to the waveform of (b). Energy diagrams indicate
the positions of the levels during the three stages. In the final stage, spin is converted
to charge information due to the difference in tunnel rates for states |S 〉 and |T 〉. (d)
Real-time traces of ∆IQPC during the last part of the waveform (dashed box in the
inset), for twait = 0.8 ms. At the vertical dashed line, N is determined by comparison
with a threshold (horizontal dashed line in bottom trace) and the spin state is declared
′T ′ or ′S′ accordingly. (e) Fraction of ′T ′ as a function of waiting time at B// = 0.02 T,
showing a single-exponential decay with a time constant T1 of 2.58 ms.
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achieve a good signal-to-noise ratio in IQPC , the signal is sent through an external

20 kHz low-pass filter. As a result, many of the tunnel events from |T 〉 will not

be resolved, but the tunneling from |S 〉 should be clearly visible.

Figure 8.2d shows several traces of ∆IQPC , from the last part (300 µs) of the

pulse to the end of the read-out stage (see inset), for a waiting time of 0.8 ms.

In some traces, there are clear steps in ∆IQPC, due to an electron tunneling off

the dot. In other traces, the tunneling occurs faster than the filter bandwidth.

In order to discriminate between |S 〉 and |T 〉, we first choose a read-out time

τ (indicated by a vertical dashed line in Fig. 8.2d) and measure the number of

electrons on the dot at that time by comparing ∆IQPC to a threshold value (as

indicated by the horizontal dashed line in the bottom trace of Fig. 8.2d). If

∆IQPC is below the threshold, it means N = 2 and we declare the state ′S ′. If

∆IQPC is above the threshold, it follows that N =1 and the state is declared ′T ′.
Our method for determining the optimal threshold value and read-out time is

explained below.

To verify that ′T ′ and ′S ′ indeed correspond to the spin states |T 〉 and |S 〉,
we change the relative occupation probabilities by varying the waiting time. The

probability that the electrons are in |T 〉, PT , decays exponentially with the wait-

ing time: PT (t) = PT (0) e−twait/T1 . Therefore, as we make the waiting time longer,

we should observe an exponential decay of the fraction of traces that are declared
′T ′.

We take 625 traces similar to those in Fig. 8.2d for each of 15 different waiting

times. Note that the two-electron state is formed on a timescale (of order 1/ΓT )

much shorter than the shortest twait used (400 µs). To find the optimal read-out

parameters, we scan a wide range of read-out times and threshold values using a

computer program. For each combination of these two parameters, the program

determines the fraction of traces declared ′T ′ for each of the waiting times, and fits

the resulting data with a single exponential decay A e−twait/T1 + α. The prefactor

A is given by 3ΓT /(ΓS+3ΓT )×(1−α−β). We see that A is proportional to the read-

out visibility, and therefore the optimal read-out parameters can be determined

simply by searching for the highest value of A. Here, we find the optimal values

to be -0.4 nA for the threshold and 70 µs for τ (corresponding to t = 370 µs in

Fig. 8.2d), and use these in the following.

In Fig. 8.2e, we plot the fraction of traces declared ′T ′ as a function of twait.

We see that the fraction of ′T ′ decays exponentially, showing that we can indeed

read out the two-electron spin states. A fit to the data yields a triplet-to-singlet

relaxation time T1 =(2.58± 0.09) ms, which is more than an order of magnitude

longer than the lower bound found in Ref. [15]. As indicated on the right side

of Fig. 8.2e, we can also extract α and β from the data. We find α = 0.15 and
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β = 0.04 (taking ΓT /ΓS = 20). The single-shot visibility is thus 81%. These

numbers agree well with the values predicted by the model (α = 0.14, β = 0.05,

visibility= 81%), as indicated by the diamond in Fig. 8.1c. Note that, since the

visibility is insensitive to τ near the optimal value, it is not significantly reduced

by the finite bandwidth of the charge measurement.

As an extra check of the read-out, we have also applied a modified pulse where

during the preparation only the singlet state is energetically accessible. Here, the

read-out should ideally always yield ′S ′, and therefore the measured probability

for finding ′T ′ directly gives us α. We find a fraction of ′T ′ of 0.16, consistent

with the value of α obtained from the fit. This again confirms the validity of the

read-out method.

8.4 Magnetic field dependence of the triplet-to-

singlet relaxation

We further study the relaxation between triplet and singlet states by repeating

the measurement of Fig. 8.2e at different magnetic fields B//. Figure 8.3a shows

the decay of the fraction of ′T ′, normalized to the fraction of ′T ′ at twait = 0,

on a logarithmic scale. The data follow a single-exponential decay at all fields.

Figure 8.3b shows the relaxation rate 1/T1 as a function of B//. The dominant

relaxation mechanisms for large values of EST are believed to originate from the
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spin-orbit interaction [4, 16]. Ref. [16] predicts a B-independent rate Γ2 that

determines the low-B relaxation, and a Zeeman energy-related rate Γ5, propor-

tional to B2, that dominates at higher B (we adopt the notation of Ref. [16]).

Although the theory of Ref. [16] is based on single-spin flips, it can explain the

two-electron relaxation data well. A fit to the data yields Γ2=(0.29 ± 0.09) kHz

and Γ5=(0.11±0.005) ·B2
// kHz, consistent with the prefactors found in Ref. [16].

A more extensive analysis of the relaxation data in both parallel and perpendic-

ular field will be reported elsewhere.

8.5 Read-out of nearly degenerate states

Finally, we show that the TR-RO can still be used when |S 〉 and |T 〉 are al-

most degenerate. By mounting the device under a 45 degree angle with respect

to the magnetic field axis, we can tune the singlet-triplet energy difference EST

through zero [11]. In Fig. 8.4a we plot EST as a function of B, extracted from

pulse spectroscopy measurements [12]. In these measurements, transitions are

broadened both by the electron temperature in the reservoir and by fluctuations

in the dot potential. We model these two effects by one effective electron tem-

perature Teff . For EST smaller than about 3.5 kTeff , the energy splitting can not

be resolved. As in previous transport and pulse spectroscopy measurements, we

find here 3.5 kTeff ≈ 60 µeV (see inset of Fig. 8.4a), and therefore it is impossible

to use the E-RO method beyond B ≈ 3.9 T. From extrapolation of the data, we
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find that the singlet-triplet ground state transition occurs at (4.25 ± 0.05)T.

We tune B to 4.15 T (see inset of Fig. 8.4a), so that we are very close to

the degeneracy point, but still certain that |S 〉 is the ground state. Figure 8.4b

shows the result of the read-out measurement at this field. Again, an exponential

decay of the fraction of ′T ′ is observed, with a T1 of (0.31 ± 0.07) ms. This

demonstrates that even when the energy splitting EST is too small to resolve, we

can still read out the spin states using TR-RO.

In future measurements, we plan to apply the tunnel-rate-selective read-out

to detect relaxation and coherent manipulation of a single electron spin.
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Chapter 9

Quantum computing with electron

spins: current status and future

directions

R. Hanson, J. M. Elzerman, L. M. K. Vandersypen,
L. H. Willems van Beveren, F. H. L. Koppens, I. T. Vink,

and L. P. Kouwenhoven

In this chapter, we review the progress towards the implemention of qubits with

electron spins confined in semiconductor quantum dots. Three out of the five

criteria for a scalable quantum computer have already been satisfied. We sum-

marize current theoretical insight on the decoherence mechanisms and discuss

the expected fidelity of the quantum gates. Finally, we present concrete ideas on

how to proceed towards coherent spin operations and two-qubit operations and

explore the possibility of a Bell test.

107
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9.1 Current status: the DiVincenzo criteria

The work in described in this thesis is motivated by Loss and DiVincenzo’s

proposal to use electron spins confined in semiconductor quantum dots as spin

qubits [1]. In chapter 1 we have outlined the basic ingredients of this proposal.

We now consider the five criteria of DiVincenzo’s checklist [2], which must all be

satisfied for any physical implementation of a quantum computer:

I A scalable physical system with well-characterized qubits

II Initialization of the qubits to a known (pure) state

III Qubit read-out

IV Long coherence times

V A universal set of quantum gates

In this section, we will review the experimental progress on the spin qubit proposal

using these five criteria.

9.1.1 Scalable physical system with well-characterized qubits

To start with, a scalable physical system with well-characterized qubits is needed.

Well-characterized means that we know the properties of the system in which the

qubit is encoded, the presence of and coupling to other states of the system, the

interaction with other qubits, and the coupling to external control parameters.

In our case, the qubit is encoded in the spin orientation of a single electron

in a static magnetic field B0, where |↑〉 serves as the logic |0〉, and |↓〉 corre-

sponds to the logic |1〉. The electron spin can not take on any value outside

the two-dimensional Hilbert space spanned by |↑〉 and |↓〉. The interaction with

other qubits and the coupling to external control fields will be discussed below

in section 9.1.5.

Since the spin is carried by an electron confined in a quantum dot, we need

to characterize this quantum dot as well. We have shown in chapter 3 that

we can isolate a single electron in each of two coupled quantum dots [3]. The

conventional way of characterizing dots is to measure the current through the dot

as a function of applied bias voltage [4]. The smallest current that we can resolve

is about 16 fA, which sets a lower bound on the tunnel rate to the reservoir, Γ,

of about 16 fA/e= 100 kHz. For Γ < 100 kHz, we can use the charge detection

technique [5] developed in chapters 3 and 6 [3, 6], where a nearby Quantum

Point Contact (QPC) serves as an electrometer. Here the limitation arises from
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the bandwidth of our charge detection setup. This bandwidth can be extended

by increasing the electrostatic coupling of the QPC to the dot using a different

gate design [7]. Further improvements can achieved by using a ‘radio-frequency

QPC’ (RF-QPC), similar to the well-known RF-SET [8]. In this approach, the

QPC is embedded in an LC circuit with a resonant frequency of ∼ 1 GHz. By

measuring the reflection or transmission of a resonant carrier wave, it is estimated

that it should be possible to read out the charge state of the nearby quantum dot

in ∼ 1 µs, an order of magnitude faster than is currently attainable [9].

Both techniques allow a measurement of the absolute number of electrons on

the dot, the discrete energy spectrum and the tunnel rate to the reservoir for the

different transitions, thus providing a full characterization of a single quantum

dot. We have used both techniques to identify the two basis states of the qubit,

|↑〉 and |↓〉, and measure their energy splitting [6, 10] (see chapters 4 and 6).

The coupling between two quantum dots can be separated into a capacitive

coupling and a tunnel coupling. The capacitive coupling can be easily inferred

from the charge stability diagram [11]. The tunnel coupling can also be deduced

from the stability diagram, either from the curvature of the lines in the “hon-

eycomb” diagram (see e.g. Ref [12]) or from the charge distribution near the

anti-crossing of the two single-dot ground states [13]. A more accurate value

for the tunnel coupling can be found by performing photon-assisted tunneling

spectroscopy. Here, microwaves induce transitions between the bonding and the

anti-bonding state only when the photon energy equals the energy splitting be-

tween these two states, which is a simple function of the tunnel coupling. This

method has been demonstrated both for transport measurements [14] and for

measurements using only charge detection [13]. The double-dot exchange split-

ting J can in principle be determined from spectroscopy measurements [15], but

in the regime of interest (J ∼ 1− 30 µeV) we might not be able to resolve it due

to thermal broadening. The value of J can always be found from the frequency

of the two-spin oscillation (see section 9.3.1).

We will finally remark on the requirement of scalability. In order to create a

quantum computer consisting of, say, several hundreds of qubits, major revisions

in the design and use of different fabrication techniques will most probably be

necessary. We do not concern ourselves now with a possible large-scale quantum

computer, but instead focus on studying decoherence and demonstrating basic

quantum algorithms. For this, a circuit containing about five to ten qubits is

sufficient for the near future. Our present circuit can be extended to incorporate

several more quantum dots, by making minor adjustments to the design of the

surface gates. Note that the charge detection schemes offer a substantial advan-

tage here, since these only require the dot to be coupled to a single reservoir.
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9.1.2 Initialization to a known pure state

Initialization of the qubits to a known pure state is required for two reasons.

First, before the start of the computation the qubits have to be initialized to

a known value. Second, for quantum error correction a continuous supply of

(ancillary) qubits in a known pure state is needed [2].

Initialization of the spin to the pure state |↑〉 – the desired initial state for

most quantum algorithms [16] – can be achieved by waiting so long that energy

relaxation will cause the the spin on the dot to relax to the |↑〉 ground state

(Fig. 9.1a). This is a very simple and robust initialization approach, which can

be used for any magnetic field orientation (provided that gµBB > 5kBT ). As

it takes about 5T1 to reach equilibrium, it is also a very slow procedure, which

might become problematic at the stage of quantum error correction [2].

A faster initialization method is to place the level |↑〉 below and |↓〉 above

the Fermi energy of the reservoir (as in Fig. 9.1b). Then, a spin-up electron will

stay on the dot, whereas a spin-down electron will tunnel out to the leads, to be

replaced by a spin-up. After waiting a few times the sum of the typical tunnel

times for spin-up and spin-down (∼ 1/Γ↑ + 1/Γ↓), the spin will be with large

probability in the |↑〉 state. This initialization procedure can therefore be fast.

A disadvantage is that the Zeeman energy splitting needs to be much larger than

the electron temperature in the leads.

A third possibility is to initialize using the large spin selectivity in the tunnel

rates, i.e. Γ↑ � Γ↓, which is present in a perpendicular field due to the spatial

separation of the spin-resolved edge channels [17, 18]. Here, we first empty the

�res
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Figure 9.1: Different methods for initialization to (a)-(c)|↑〉 and (d) |↓〉. (a) Spin
relaxation at a rate 1/T1 gives the state |↑〉 after ∼5T1. (b) Energy-selective tunneling
leads to |↑〉 after a time ∼ 1/Γ↑+1/Γ↓. We use here explicit notations for the transitions
between the zero-electron state and the one-electron spin states to avoid confusion with
the transitions used in (d). (c) If Γ↑ � Γ↓, tunneling into an empty dot will result in
|↑〉 with a probability Γ↑/(Γ↑ + Γ↓). (d) Initialization to |↓〉 for Γ↑ � Γ↓ by starting
from the two-electron singlet state, denoted here by S.
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dot, and then position both spin levels below µres (see Fig. 9.1c). The electron

that will tunnel in will have spin-up with probability Γ↑/(Γ↑ + Γ↓), which is very

close to unity for high spin selectivity.

For verifying read-out procedures and testing two-qubit operations (see sec-

tion 9.3.1), we also need the ability to initialize to the spin-down state. The most

straight-forward method is to initialize to |↑〉 and rotate the spin by 180 degrees.

However, controlled rotation of a single spin on a quantum dot has not yet been

demonstrated. Fortunately, there are other ways to initialize to |↓〉. If the tun-

nel rates are spin-selective as mentioned above, we can start from a two-electron

singlet state |S 〉=(|↑↓〉-|↓↑〉)/√2, and allow one electron to tunnel off the dot.

Since Γ↑ � Γ↓, the probability that the tunneling electron has spin-up and there-

fore the remaining electron has spin-down is Γ↑/(Γ↑ + Γ↓) (see Fig. 9.1d). Thus,

we can initialize to |↑〉 and |↓〉 with the same high fidelity.

In the absence of spin-selectivity in the tunnel rates we can not initialize to

|↓〉, but we can initialize to a mixed state where the electron is probabilistically

in |↑〉 or |↓〉, by first emptying the dot and then positioning both spin levels

below µres (see chapter 7). The dot is then randomly filled with either a spin-up

or a spin-down electron.

9.1.3 Qubit read-out

Read-out determines the result at the end of the computation by measuring

specific qubits. Many proposals exist for reading out the electron spin state on a

quantum dot (see chapter 7 for an extensive list of references). In this thesis, we

have demonstrated two methods. In both of them, the spin information is first

converted to charge information, by making the number of electrons on the dot,

N , dependent on the original spin state.

The first approach makes use of the large Zeeman energy splitting induced

by an in-plane magnetic field. Here, the two spin levels are positioned such that

an electron can tunnel off the dot only if it carries the high-energy spin (as in

Fig. 9.1b). This is followed by real-time detection of single-electron tunneling

events using the QPC as an electrometer. We have used this method in chapter 7

to perform single-shot read-out of the spin of a single electron [19]. Here, the

measurement visibility was ∼ 65% at 10 T, limited mostly by the ∼ 40 kHz

bandwidth of our current measurement setup, and also by thermal excitation of

electrons out of the quantum dot, due to the (in this experiment) high effective

electron temperature of ∼ 300 mK. We estimate that we can improve the visibility

of this energy-selective read-out (E-RO) technique to more than 90% by lowering

the electron temperature below 100 mK, and especially by using a faster way to
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measure the charge on the dot (see section 9.1.1).

The second method that we have studied makes use of a difference in tunnel

rate between the spin states. To read out the spin orientation of an electron on

the dot, we simply raise both dot levels above µres, so that the electron can leave

the dot. If the tunnel rate for spin-up electrons, Γ↑, is much larger than that

for spin-down electrons, Γ↓, then after a time τ , where Γ−1
↓ � τ � Γ−1

↑ , the dot

will have a large probability to be already empty if the spin was up, but a very

small probability to be empty if the spin was down. Measuring the charge on

the dot at t = τ thus reveals the original spin state. In chapter 8 this tunnel-

rate-selective read-out (TR-RO) method is used to read out the two-electron spin

state, achieving a single-shot visibility of 81% [23]. We plan to use TR-RO also

for a single electron by applying the magnetic field perpendicular to the 2DEG,

so that Γ↑ � Γ↓ [17, 18].

As explained in chapter 8, TR-RO has some important advantages over E-RO.

In contrast to E-RO, TR-RO does not require a large energy splitting between the

spin states, it is robust against background charge fluctuations and is insensitive

to photon-assisted tunneling. Which of the two read-out methods is preferable

will also depend on the specific demands of the particular experiment.

9.1.4 Long coherence times

The electron spin was proposed as a candidate for a qubit, because the spin state

was believed to be very stable. Relaxation measurements on a single spin (chap-

ter 7 and Ref. [20]) and on two-electron spin states (chapter 8) have shown long

spin relaxation times up to several milliseconds, suggesting that indeed the spin is

only weakly perturbed by the environment. In contrast, the orbital degree of free-

dom of electrons has been measured to decay on a 10 nanosecond timescale [21],

which is five orders of magnitude faster than the spin relaxation. The true figure

of merit for quantum computing, however, is the coherence time.

The timescale on which the coherence is maintained, i.e. on which the evo-

lution of the qubit state does not deviate from the desired route (set by the

internal Hamiltonian plus the control fields), is denoted by T2. To avoid confu-

sion here, we explicitly define T2 to be the coherence time during free evolution of

the qubit. (The coherence time can be longer when the qubit is undergoing Rabi

oscillations, because (i) the oscillations have a refocusing effect and (ii) the spin

is nearly parallel to the field for about half the time, such that decoherence is less

effective [22]). Note that the coherence time merely reflects the lack of knowledge

that we have about (the interaction of the qubit with) the environment or the

inability to compensate for this interaction. Therefore, the coherence time can be
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extended by increasing the knowledge of or the control over (a part of) the envi-

ronment. Also, decoherence mechanisms that are constant on a timescale much

longer than the typical qubit operation time can be canceled out by spin-echo

and composite pulses techniques, provided that the coherence time still allows a

full rotation to be performed [22].

In principle, loss of coherence can be entirely compensated for by performing

quantum error correction [16]. It is estimated that if the error per operation is

10−4, error correction can be successful and arbitrarily long computations can be

performed. (This ratio is sometimes referred to as the ‘accuracy threshold’). It

implies that also T2 has to be at least 104 times larger than the gate operation

time.

The value of T2 for a single electron spin in a GaAs quantum dot has not

yet been measured. For electrons in bulk n-type GaAs, an ensemble-averaged

measurement has yielded a spin decoherence time T ∗
2 of 100 ns [24]. This number

has long been interpreted as a lower bound for the T2 of electron spins on a

quantum dot, i.e. T2 ≥ T ∗
2 . As we will see below, this is not correct.

Over the past few years, theoretical insight into the electron spin relaxation

and decoherence mechanisms has increased enormously. At present, the domi-

nant mechanisms are believed to be the spin-orbit interaction [25, 26], and the

hyperfine interaction with the nuclei [27, 28, 29, 30]. Recent theory suggests that

the spin-orbit interactions, in leading order, do not affect the transverse compo-

nents of the spin [26]. This would imply that the spin-orbit limited coherence

time can not be shorter than the relaxation time T1. In contrast, the nuclear spin

system is expected to have a much more severe impact on T2 than on T1.

The hyperfine interaction of the electron spin with the surrounding nuclear

spins leads to an additional effective magnetic field Bnucl, the so-called Overhauser

field. The polarization of the nuclei will usually be negligible in our experiments

and thus the absolute value of Bnucl will be small compared to the external field

B0. Anyway, a static polarization just adds a constant offset to B0 and thus

has no effect on the coherence. In contrast, the fluctuations in Bnucl, denoted

∆Bnucl, cause uncertainty in the total effective magnetic field and can therefore

lead to significant decoherence of the electron spin. In zero external magnetic

field, there are three characteristic timescales connected to Bnucl: the period of

the electron precession in ∆Bnucl: τ1, the period of the nuclear spin precession

in the hyperfine field of the electron, which changes the orientation of ∆Bnucl:

τ2, and the nuclear spin relaxation time in the dipole-dipole field of its nuclear

neighbors: τ3.

The first and shortest timescale, τ1, is set by the value of the statistical varia-

tion of Bnucl: ∆Bnucl ∼ A/(
√

NnuclgµB), where A is the hyperfine constant (A =
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90 µeV in GaAs [31]), and Nnucl is the number of nuclei with which the electron

interacts. It leads to a precession period of τ1 ∼ h
√

Nnucl/A. For Nnucl=105, we

have ∆Bnucl ∼10 mT and thus τ1 is about 15 ns. Note that we regard the nuclear

field to be ‘frozen’ on this timescale.

Secondly, ∆Bnucl varies in time due to the precession of the nuclear spins in

the hyperfine field of the electron. The effective magnetic field that the nuclei

feel is proportional to the square of the electron wave function at the position

of the nucleus. Since the wave function is not constant over the dot, nuclei

at different positions experience different hyperfine fields and thus precess with

different frequencies leading to a slow variation in ∆Bnucl. (Note that the electron

precesses much faster than the nuclei and therefore the nuclei see only a time-

average of the hyperfine field of the electron). In Ref. [29] the timescale on which

∆Bnucl changes is estimated to be 1 µs.

The situation changes drastically when a large external magnetic field is ap-

plied. Now, both the electron spin and the nuclear spins will effectively precess

around the external field. Therefore, the component of the nuclear spins along

the magnetic field will not change due to precession in the hyperfine field of the

electron. Furthermore, since the electron spin is directed along the strong exter-

nal field, it is much less sensitive to fluctuations in the transverse direction. The

conclusion is that in the case of a strong magnetic field the second timescale be-

comes very long and the third timescale, τ3, becomes important. This timescale

results from changes in the nuclear field due to dipole-dipole interactions. It is

estimated to be about 100 µs [28, 29], and presents an upper bound on the spin

decoherence time T2. In fact, T2 would approach τ3 if the value of Bnucl would

be known exactly. In practice however, Bnucl is not known, and the relevant

decoherence time is τ1. We thus expect T2 to be on the order of 10 ns.

How can this number be reconciled with the T ∗
2 of 100 ns obtained for elec-

tron spins in bulk GaAs [24]? The answer lies in the number of nuclei with

which the electron interacts. The wave function of an electron in the bulk is

spread out, whereas the electron in the dot is confined to a disk of about 35 nm

diameter. Therefore, an electron in the bulk interacts with many more nuclei,

and since ∆Bnucl ∝ 1/
√

N this leads to a much lower decoherence rate. We can

conclude that the coherence time measured in the bulk (or in a 2DEG) can not

be considered as a lower bound for T2 of an electron on a quantum dot.

These considerations should be taken as a strong incentive to study the be-

havior of the nuclei in more detail experimentally. Pioneering experiments in the

group of Prof. Tarucha at the University of Tokyo have already uncovered some

intriguing physics, occurring when electron transport through a vertical double

dot is spin-blocked due to the Pauli exclusion principle [32]. Very recently, the
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Pauli spin blockade was also observed in a lateral system in the group of Prof.

Marcus at Harvard [33]. Since this lateral system allows more parameters to be

tuned in situ, further exciting results can be expected.

The quest in the next years will be for a means to ‘turn off’ the fluctuations

in the nuclear system on longer timescales. Since the decoherence arising dur-

ing the precession of the electron spin in one nuclear configuration can be exactly

canceled by a precession in the opposite nuclear configuration, flipping all nuclear

spins with a period much faster than τ1 will greatly prolong the coherence. Alter-

natively, if the electron spin can be manipulated on timescales much shorter than

τ1, composite pulse techniques can be used [22]. In these cases, coherence can be

preserved for a time τ3 (about 100 µs). One ultimate possibility is to completely

polarize the nuclear spin system, thus eliminating all fluctuations. Also, we can

think of isolating the electron spin in a different host material where the nuclei

possess no spin. Most notably, SiGe quantum wells and carbon nanotubes can

in principle be purified to contain only spinless nuclei. These systems might one

day exhibit the same excellent control over single-electrons that we have right

now in GaAs structures.

To put the value of the coherence time in perspective, we need to compare it

to the gate operation time, which we will estimate in the next section.

9.1.5 A universal set of quantum gates

A set of quantum gates is called universal if every unitary operation on an ar-

bitrary number of qubits can be decomposed into combinations of only these

quantum gates. It has been proved that full single-qubit control combined with

the two-qubit ‘quantum XOR’ (or ‘CNOT’), suffice to implement all possible

quantum algorithms [16].

For electron spins in quantum dots, both the single-qubit control fields as well

as the interactions between neighboring qubits can be completely turned on and

off at will. The two-qubit CNOT can be implemented by a combination of single-

qubit rotations and two-spin exchange interactions [34]. In fact, the exchange

interaction is even universal by itself, i.e. without single-qubit rotations, when

the state of each qubit is encoded in the state of three electron spins [35].

We consider two schemes for single-spin rotations. In one approach, an oscil-

lating magnetic field Bac is applied perpendicular to the static field B0 at the Lar-

mor frequency gµBB0/h. This induces spin rotations at a rate fRabi = gµBBac/h,

which is about 6 MHz for Bac = 1 mT. This well-known electron spin resonance

(ESR) technique has already been applied in the 1980s to GaAs/AlGaAs 2DEG

electrons in the Quantum Hall regime (see e.g. Ref [36]). At dilution fridge
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temperatures, it is hard to reach values of Bac exceeding 5 mT using current

technology (see section 9.2.1). If we assume Bac < 5 mT, then fRabi < 30 MHz

and the single-qubit gate operation time will be at least 1/2fRabi ∼ 15 ns. As we

have argued in the previous section, T2 might be of the same order. Our efforts

to demonstrate single-spin ESR will be discussed in section 9.2.

Alternatively, a spin rotation can be achieved by modulating the value of the

electron g-factor at the Larmor frequency. This so-called g-tensor modulation

has been experimentally demonstrated on electrons in an AlGaAs/GaAs/AlGaAs

quantum well [37]. Here, a voltage on a backgate pulls the electron wave function

from the GaAs central region, where g is -0.44, into the AlGaAs barrier region,

where g is +0.4 [38]. Due to the anisotropy of the g-factor in these quantum

wells, the orientation of the effective magnetic field also changes. By applying an

oscillating electrical signal at the Larmor frequency to the backgate, the spin of

electrons in the quantum well could be tipped by 2 degrees. For a single electron

in a quantum dot, such oscillating electric fields might induce unwanted effects

like photon-assisted tunneling. Furthermore, increasing the anisotropy such that

it can produce rotations of 180 degrees seems challenging. Therefore, the ESR

approach is likely to yield the first experimental demonstration of single-spin

rotations and provide a value for T2. Control over the g-factor might become

useful to bring individual electron spins into resonance with a ‘global’ ESR field.

Two-spin operations are mediated by the exchange interaction, which leads

to an effective Heisenberg Hamiltonian J �S1 · �S2. Here, J is the strength of the

exchange interaction and �S1 and �S2 denote the two spins. The value of J is related

to the overlap of the electron wave functions, which varies exponentially with the

voltage applied to the gate controlling the inter-dot tunnel barrier. Thus, by

applying a (positive) voltage pulse with a certain amplitude and duration, we

can temporarily turn on the exchange interaction. The two-spin operations are

discussed in more detail in section 9.3.

The shortest electrical pulses applied to surface gates that can be precisely

controlled are on the order of 100 ps [39], corresponding to a value of J/h ∼ 5 GHz

(for completely swapping the spin states). During the gate operation, fluctuations

in the tunnel rate due to charge noise can lead to additional decoherence. It has

been shown recently that background charge noise has only a very weak effect on

the tunnel rate to the reservoir [40]. However, it can also lead to misalignment of

the two single-dot levels, which will enhance J [41]. Since there are many factors

that possibly influence the background charge noise, it is difficult to capture its

effect on the coherence in a single number.

As in the case of a single spin, the nuclei can pose a significant threat: different

Overhauser fields on the two dots (∆Bnucl on the order of 10 mT) lead to a
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difference in the effective spin splitting δE of about 0.3 µeV. The error induced

by δE is (δE/2J)2 [42]; thus we can make the error small by performing the

operation within a short time. For J= 20 µeV (5 GHz), the error is of order

10−4.

Concluding, current insight suggests that the single-qubit gate operation time

(with our present technology in GaAs) is of the same order as the expected T2.

Single-qubit operation time might be drastically shortened using new electrical

or optical techniques. For two-spin operations, the gate operation time could

well be much shorter. If the decoherence rate turns out to be the same for

one- and two-qubit operations, the two-qubit gate will be much closer to the

accuracy threshold. In that case, the scheme where one qubit is encoded in the

state of three electron spins [35] is more attractive than the original single-spin

proposal [1], as single-spin rotations can then be completely left out.

9.1.6 Summary of the current status

Out of the five criteria for a scalable quantum computer, three have already been

satisfied: well-defined qubits, initialization and read-out. Theoretical considera-

tions suggest that the single-qubit operation time might be of the same order as

the coherence time due to the hyperfine interaction with the nuclei, while for the

two-spin operations the gate operation time is possibly much smaller.

Future experiments will focus on measuring the coherence time via the coher-

ent manipulation of single spins and the coherent coupling and manipulation of

spins in neighboring dots. In the next sections we will discuss these two research

paths in more detail.

9.2 Single-spin rotations

In this section, our approach to the coherent rotation of a single electron spin

using the above-mentioned ESR principle is outlined. We first discuss the on-

chip generation of the required microwave field. Then we propose and critically

analyze several schemes for the detection of ESR.

9.2.1 On-chip generation of the oscillating magnetic field

Excitation of ESR microwave magnetic fields commonly relies on microwave cavi-

ties, but unfortunately, a lot of power is dissipated in metallic cavities: for a rect-

angular cavity with a high Q-factor of 104, the power dissipation is over 1 Watt
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for Bac = 1 mT at f0 = 30 GHz and still about 100 µW for Bac = 0.01 mT [43].

Superconducting cavities are not an option since B0 is too large.

Instead, we intend to generate the oscillating magnetic field by sending an

alternating current through an on-chip wire running close by the dot, as shown

in Fig. 9.2a. Depending on the orientation of the static magnetic field that we

prefer, the wire can be located next to the dot (for an in-plane magnetic field) or

on top of the dot (for an in-plane or a perpendicular field). In the latter case, an

insulating layer will separate the wire from the surface gate structure.

If the wire is placed well within one wavelength (which is a few mm at 30 GHz

near the surface of a GaAs substrate) from the quantum dot, the dot is in the near-

field regime and the electric and magnetic field distribution produced by the AC

current should be the same as for a DC current [43]. The linearly oscillating field

can be decomposed into a clockwise and an anti-clockwise component rotating at

the same frequency. In the rotating frame, one of these components will be static

(the resonant component), while the other one will be far off-resonance and can

be disregarded. Note that this implies that only half of the applied oscillating

field is actually effective. For a distance between the edge of the (500 nm wide

and 200 nm high) wire and the centre of the dot of 200 nm, a current of ∼ 2.5 mA

should generate a magnetic field of about 1 mT and no electric field at the position

of the dot [44, 45]. To minimize reflection and radiation losses, the wire is designed

a b

Iac

Bac

20 m�

500 nm

B0

200 m�

c

Figure 9.2: Scanning electron micrographs showing of the on-chip gold wire to apply
microwaves to a nearby double quantum dot. This device was fabricated by Wouter
Naber. (a) An AC current through the wire, Iac, generates an oscillating magnetic
field, Bac, perpendicular to the plane. If the AC frequency is resonant with the Zeeman
splitting induced by a large static in-plane magnetic field, B0, an electron spin on the
dot will rotate. (b)-(c) Zoom-outs of (a), showing the coplanar stripline which is
designed to have 50 Ω impedance.
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to be a shorted coplanar stripline (Fig. 9.2b) with a 50 Ω impedance. The total

dissipation of the on-chip section (Au wire + Au waveguide) is estimated to be

on the order of 10 µW for an oscillating field of 1 mT [45], which is well below the

thermal budget at the mixing chamber of the dilution refrigerator (about 300 µW

at 100 mK). For a field of 5 mT, the dissipation increases to about 250 µW.

9.2.2 Detection of Continuous Wave ESR

In the simplest schemes for detecting ESR, the microwave field Bac is continuously

on. Engel et al. have proposed a setup in which spin rotations on the dot [46]

lead to a current flowing through the dot. This scheme is depicted in Fig. 9.3a-b

for a single electron on the dot. If the ESR field is off resonance, the dot is in its

ground state |↑〉 and there is no current due to Coulomb blockade (Fig. 9.3a).

In contrast, if the ESR field rotates the spin on the dot to |↓〉, the electron has

enough energy to escape to the right lead (Fig. 9.3b). A resonant current now

flows via |↓〉 until |↑〉 becomes occupied. The current is then again blocked until

the spin is rotated. In Fig. 9.3c a simulation (using the model of Ref. [46]) shows

the expected current trace versus gate voltage, for two different values of Bac.

From the linewidth in frequency (or magnetic field) of the resonance, a lower

bound on the single-electron T2 can be derived.

A similar setup has been proposed where the ESR-induced change in the

average occupation of the dot is measured [47]. Recently, measurement of a spin

resonance signal using this setup from an electron in a Si MOSFET impurity trap

has been reported [48].

Although these schemes are conceptually simple, it is quite hard to prove that

a signal in the current as shown in Fig. 9.3c is indeed due to single-spin rotations

on the dot. We discuss here two relevant parasitic effects that can lead to a

similar resonance feature.

First, it is virtually impossible to completely eliminate the electrical com-

ponent of the oscillating field. This electrical component can induce a photon-

assisted tunnel event from |↑〉 to the leads (see Fig. 9.3d). This so-called photo-

ionization process leads to exactly the same situation as in Fig. 9.3b. Also, for

even higher electric fields a current can flow where every tunnel event involves

photon-absorption (pure photon-assisted tunneling). This will induce peaks on

both sides of the main peak.

Second, if the ESR resonance frequency of electrons in the leads is the same

as the expected resonance frequency for the electron on the dot (see Fig. 9.3e),

a current will flow through the dot independent of whether the spin on the dot

is actually rotated. Clearly, under these conditions there is no way to prove that



120 Chapter 9. Quantum computing with electron spins

a

�R

�L

�

�

b

�

�

hf g B� �B 0 hf g B= �B 0
c

d

�

�

�

�

Photon-assisted
tunneling

ESR in the
reservoirs

e

�

�

Heating in the
reservoirs

f

2

0

I Q
D

(p
A

)

�

��

gate voltage (a.u.)

Bac= 5mT

Bac= 1mT

�L �R

Figure 9.3: Detection of Continuous Wave (CW) ESR. (a)-(b) Scheme for detecting
CW ESR. (a) The electron can not leave the dot if it is in in |↑〉. (b) If the electron
is in |↓〉 due to a spin rotation, it can tunnel off the dot and contribute to the current.
(c) Simulation of the expected current as a function of gate voltage, using the model
of Ref. [46]. The symbols ↑ and ↓ indicate the gate voltage at which the levels for ↑
and ↓ lie within the bias window (i.e. are between µL and µR). The ESR-induced peak
is about 20 fA (400 fA) for Bac= 1 mT (5 mT). We have used the following parameter
values: T1=1 ms, T2=100 ns, ΓL=50 MHz, ΓR=15 MHz, B0=5 T. Curves similar to
(c) can result from the unwanted effects of (d) photon-assisted tunneling, (e) ESR in
the reservoirs, or (f) heating of the electrons in the reservoir.

spin rotations occur on the dot. (A similar effect is present when the electrons

in the leads are heated by the microwave field (Fig. 9.3f), but the frequency

and magnetic field dependence of the heating process and ESR will generally be

different). Both the photo-ionization process and ESR in the reservoirs can not

be circumvented by changing the magnetic field, making single-spin ESR on the

dot hard to prove.

9.2.3 Detection of pulsed ESR

The problems mentioned in the previous section can be avoided by separating

the spin rotation and the read-out in time: Bac is turned on when the levels are
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well in the Coulomb blockade regime, and Bac is off when the spin state is read

out. In between, we allow enough time for any excitation in the reservoirs to

disappear (note that the relaxation times in the leads are much shorter than T1

on the dot). This way, photon-assisted tunneling does not provide enough energy

for the electron to tunnel out, and the read-out is performed when the reservoirs

are (again) in thermal equilibrium.

In the long run, we would like to combine ESR with single-shot read-out.

In order to find the resonance condition and obtain first evidence of single-spin

rotation, it is more convenient and much faster to apply a voltage pulse train

and measure the read-out signal averaged over many cycles. In Fig. 9.4a we

show the pulse amplitude VP and the amplitude of the microwave field Bac as a

function of time. The spin is rotated when the levels are in Coulomb blockade

(Fig. 9.4b). After the spin rotation, some time is allowed for the excitations in

the leads to disappear (Fig. 9.4c). Then the levels are brought into the read-out

configuration. In the transport scheme of Fig. 9.4d, the electron can tunnel out

and contribute to the current only if its spin has been rotated. The two read-out

configurations shown in Figs. 9.4e and 9.4f both rely on charge detection with

the QPC. In the scheme of Fig. 9.4e, an electron can tunnel off the dot only

if its spin was rotated. Thus, temporarily the number of electrons will be zero,

reducing the average charge on the dot, which in turn affects IQPC. In the scheme

of Fig. 9.4f the tunneling is fast if the electron has spin-up, but becomes very

slow if the spin was rotated. If the difference in tunnel rates is large enough, and

Γ↑ � frep/2 ∼ Γ↓, then during a large part of the read-out stage there will be

one electron on the dot if the electron was spin-down, and zero electrons if the

electron was spin-up. Again, with the QPC we can measure this difference in

charge.

We now estimate the minimum field strength of Bac necessary to observe the

resonance signal using transport as in Fig. 9.4d. The peak in the current has to

exceed about 16 fA (the smallest detectable current in our setup). The current

can be written as

I = e <n> frep = e P↓ n↓ frep, (9.1)

where frep is the pulse repetition frequency and <n> the average number of elec-

trons transported per pulse cycle, which is the product of P↓, the probability that

the spin is down at the start of the read-out stage, and n↓, the average number

of electrons transported during the read-out stage for P↓ = 1. Assuming we ap-

ply Bac for 20 ns, which is on the order of the expected T2, then wait 10 ns for

the excitations to disappear, and use 70 ns for the read-out stage, the repetition

frequency of the pulse train will be 10 MHz. The tunnel rate for spin-down in
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Figure 9.4: Detection of pulsed ESR. (a) The pulse amplitude VP and the applied
microwave field Bac as a function of time. (b) The spin is rotated by Bac when the
levels are in Coulomb blockade. (c) Then Bac is turned off, and the excited electrons
in the leads relax. In the last part, the levels are brought in the read-out configuration.
If the spin was rotated it results in (d) a change in the current due to a difference in
energy, or in a change in the average charge on the dot caused by (e) a difference in
energy or (f) a difference in tunnel rate.

Fig. 9.4d has to be least 50 MHz, to make sure the electron will have enough

time to tunnel off the dot during the read-out stage. Then, <n> needs to be at

least 16 fA/(efrep)=0.01. If Γ↑ = Γ↓, n↓ will be of order 1, and therefore P↓ has

to exceed 0.01, implying that the spin has to be rotated over an angle of about 6

degrees within 20 ns (assuming every cycle starts with a spin-up electron). The

Rabi frequency fRabi then has to be at least 6/(360·20 ns)≈ 0.8 MHz, correspond-

ing to a value for Bac of about 0.13 mT. If Bac is 1 mT, the expected current is

64 times as high (1 pA).

If the tunnel rates are spin-dependent (Γ↑ > Γ↓), the signal can be increased

by performing the experiment at the 1↔2 electron transition. The scheme is
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completely similar, except that for the same fRabi, <n> will be larger because

n↑, the equivalent of n↓, can be much larger than 1.

In both schemes using charge detection, we can increase the signal-to-noise

ratio by using lock-in detection of IQPC at the pulse repetition frequency (see

chapter 6). The drawback is that the pulse repetition frequency is then limited

to the bandwidth of the wiring in our dilution fridge, which is about 100 kHz.

More analysis is needed to find the resulting strength of the ESR signal for these

charge detection schemes.

Finally, we would like to detect ESR using single-shot read-out. Finding the

resonance this way is very time-consuming and can be more easily done using

one of the techniques described above. However, at the resonance the single-shot

measurement will allow us to map out the Rabi oscillation in time, and perform

more advanced rotations such as a spin-echo.

9.3 Two-spin experiments

9.3.1 Two-spin quantum gate: swap

The goal of the two-spin experiments is to demonstrate the operation of the

swap gate, which exchanges (‘swaps’) the states of the two spins. This two-

spin operation can be explored independently of the single-spin rotations. Only

for the demonstrating of a quantum-CNOT gate [1], we will need both
√

swap

operations and single-spin rotations.

The swap gate can be conveniently understood as follows. The two spins

are initially uncoupled and reside in the single dot orbital eigenstates. When

the tunnel coupling becomes nonzero due to a voltage pulse on a gate, the new

eigenstates are the two-electron spin singlet state |S 〉 = (|↑↓〉−|↓↑〉)/√2 and

the spin triplets |T+〉 = |↑↑〉, |T0 〉 = (|↑↓〉 + |↓↑〉)/√2 and |T−〉 = |↓↓〉. Here,

the orbital part of the wave function is built up from combinations of the single-

dot orbitals (see e.g. Ref. [41]). The energy difference between the singlet and

the triplets is the (time-dependent) Heisenberg exchange energy J(t). Now, if

initially the electrons had opposite spin, we can write the two-electron spin state

as

|↑↓〉 = (|↑↓〉 − |↓↑〉 + |↑↓〉 + |↓↑〉)/2 = (|S 〉 + |T0〉)
√

2. (9.2)

Thus the spins start in a superposition of a singlet and a triplet state. The

relative phase between the two parts of the superposition will change according

to their energy difference J(t) (i.e. the state precesses in the new eigenbasis):

(|S 〉 + |T0〉)/
√

2 → (|S 〉 + e−i
∫

J(t)dt/� |T0〉)/
√

2. (9.3)
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After a time tSWAP , defined by
∫ tSWAP

0
J(t)/� dt = π, the state has evolved to

(|S 〉 + e−iπ|T0〉)/
√

2 = (|S 〉 − |T0〉)/
√

2 = |↓↑〉, (9.4)

and the states of the two spins have been swapped. The whole period between

t = 0 and t = tSWAP , the two spins are entangled. Note that the important

parameter here is the integral over J(t), not its maximum value. If the two spins

initially carry the same spin, they are already in a two-spin eigenstate (|T+〉 or

|T−〉), and the swap operation does not change the spin states, so entanglement

will arise.

The scheme for measuring the coherent oscillation between the spins follows

straightforwardly from the above. We prepare qubit 1 in state |↑〉 and qubit 2

in |↓〉. Measurement of qubit 1 should then always give |↑〉, while measurement

of qubit 2 should give |↓〉. Now, we pulse the tunnel barrier separating the two

dots for a specified time tpulse, and read out the spin states. On repeating this

measurement for many values of tpulse, we will find the probabilities of qubit 1

and 2 to be in |↑〉 and |↓〉 respectively to oscillate in phase with the frequency

J/h as a function of tpulse. (The control measurements for the other combinations

of initial spin states can be done similarly.) These two-spin operations will yield

the coherence time, the value of J , and most importantly, the basic resource for

quantum computing: entanglement of electrons!

9.3.2 Measurement of Bell’s inequalities

The presence of entanglement can be experimentally verified by performing a test

of the well-known Bell’s inequalities [16]. A violation of Bell’s inequalities in the

solid state has not yet been measured, partly because there it is very hard, due to

the strong interactions, to separate entangled particles and subsequently measure

the entangled property in different bases. There exist numerous proposals for

demonstrating entanglement using noise, see e.g. Ref. [49] for an overview, but

we will focus here on single measurements of the spin. We give a short overview

of the ingredients necessary for a measurement of Bell’s inequalities for entangled

electron spins and their possible implementations. (We leave the issues of spin

decoherence and relaxation aside).

Entangled particles

First of all, we need to entangle the spin states of the electrons. As was shown

in the previous section, two electrons in a double quantum dot can be entangled

by a nonzero tunnel coupling between the dots. We can simply start with a large
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tunnel coupling, such that the electrons are in the singlet ground state, which

is maximally entangled [16]. Then, we decrease the tunnel coupling to zero by

changing the gate voltage that controls the tunnel barrier between the two dots.

This leaves us with two electrons, separated by a large barrier and maximally

entangled.

Channels to separate the particles

The Bell test requires the particles to be far enough apart that no interaction

can be present between the two. In order to ascertain that the interaction be-

tween the electrons is minimized, we want to move the electrons to different

places in the device. To test the presence of nonlocal correlations, the time be-

tween the measurements on the two particles needs in principle to be shorter

than the shortest time needed for the two particles to exchange information (i.e.

their distance divided by the speed of light). In the devices that we use, this

requirement can not be fulfilled unless we convert the electron spin information

to photons (research on semiconductor nanowires in our group has exactly this

goal). Here we leave this requirement aside and only desire the particles to be

separated over a ‘macroscopic’ length scale, say several micrometers. Of course,

transporting one electron away from the double dot is sufficient. Note that the

quantum information has to be preserved during this transportation.

A narrow channel can be created electrostatically by using the surface de-

pletion gates. This channel can be completely emptied of electrons, and can

easily connect to a quantum dot several micrometers away. We are currently

investigating whether we can transport single electrons through such a channel

without destroying the spin information. Possible problems include the roughness

of the potential landscape, that can localize electrons within the channel, or the

spin-orbit interaction, which is possibly much larger than in the zero-dimensional

case [25]. (The transport of single electrons from a double dot to a quantum point

contact via a ‘quantum channel’ for a Bell test has been extensively analyzed in

Ref. [50].)

Another possibility is the use of edge channels in the Quantum Hall regime.

These channels follow equipotential lines, and momentum scattering is strongly

suppressed. Extraction of the electron from the channel into another quantum

dot might be possible if the energy of the electron is much higher than the Fermi

energy in the edge channels, and energy relaxation does not occur during the

transportation time. However, this still looks problematic since the tunnel prob-

ability into the dot is very small, and the electron will need to be allowed many

attempts before it will have tunneled into the dot with a high probability. Also,
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Figure 9.5: Possible device lay-out for a Bell test on two entangled electron spins.
The basis of this layout is an Scanning Electron Micrograph of a device that allows six
coupled dots to be formed (device was fabricated by Wilfred van der Wiel and Ronald
Hanson at NTT Basic Research Laboratories). The two electrons are first entangled
in the two neighboring dots on the right via the inter-dot tunnel coupling. Then, one
electron is transported to the other end of the array. The spins can be selectively rotated
using the oscillating magnetic field generated by the two ESR wires. Finally, we can
read out the spins using spin-to-charge conversion and the two QPCs as electrometers.

it is not clear how the interaction with the other electrons in the edge channel

will effect the coherence.

Finally, we could use an array of dots, and transfer one electron to the other

side of the array by simply raising the electrochemical potentials in the dots one

by one, such that the electron ‘hops’ from one dot to the next. An example

of such an array containing six dots is shown in Fig. 9.5, where the maximum

distance between the electrons is about one micrometer. Quantum point contacts

located next to the dots can monitor the movements of the electron while it is

being transferred along the array.

Read-out in different bases

When the electrons are spatially separated, we have to read out their electron

spins in different bases [16]. The two read-out methods that we have at hand

both project the spin state onto the eigenstates |↑〉 and |↓〉. To measure in a
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different basis, we can rotate both spins just before reading them out using an

ESR field (for a discussion on single-spin rotations see section 9.2). The choice of

read-out method might also depend on the type of channel used. For instance, a

perpendicular magnetic field is needed to create edge channels, and in that case

the tunnel-rate selective read-out has to be used.

Summarizing, a measurement of Bell’s inequalities could be performed by

starting from a tunnel-coupled double dot, pinching off the tunnel barrier, then

transferring one electron along an array of dots, and finally rotating the spins to a

new basis and reading them out. A possible device lay-out for such an experiment

is shown in Fig. 9.5. The only missing ability is the controlled rotation of the

electron spins, which is likely to be achieved in the near future. Thus, we might

soon be able to attempt a Bell test in the solid state!

9.4 Conclusions

The experimental research on using electron spins as quantum bits, which started

only about three years ago, has already produced a number of exciting results,

including isolation and read-out of a single electron spin. Experiments are now

aimed at controlling the coherent properties of single spins as well as at creating

and detecting entanglement between two spins. The ideas laid out in this chapter

provide a detailed guide for experiments in the near future.

The question remains whether we will ever see a quantum computer based

on electron spins in quantum dots. There are a number of fundamental issues,

e.g. the hyperfine interaction and the scaling to more than ten qubits, that need

to be resolved before we can start thinking about a true large-scale quantum

computer. However, as these problems are being attacked, new theoretical ideas

and experimental techniques will be developed, which are not only extremely

valuable for future research on a spin quantum computer, but at the same time

will yield more interesting and exciting physics.
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Appendix A

Extracting tunnel rates from the

electron response to a pulse train

In this Appendix, we derive an analytical expression for the electron response to

a pulse train, measured using a lock-in amplifier operated at the frequency of the

pulse train. We show that such measurements allow us to determine the tunnel

rates for ground and excited states.

A.1 Dot occupation probability with a pulse train

applied

The waveform of the applied voltage pulse train is shown in Fig. A.1a. We start by

calculating the probability Pe(t) that the dot does not contain an extra electron

at time t. Each cycle of the voltage pulse train, which has a repetition frequency

frep = 1/2τ , consists of two parts: the high phase (0 ≤ t ≤ τ), where one electron

can tunnel onto the dot and the low phase (τ ≤ t ≤ 2τ), where one electron can

tunnel off the dot (see the energy diagrams in Fig. A.1a). We denote the total

tunnel rate and Pe in the high (low) phase as Γh (Γl) and Pe,h(Pe,l), respectively.

We start with writing down Pe(t) for the two phases separately:

Pe,h(t) = Pe,h(0) · e−Γht, for t ∈ [0, τ ], (A.1)

Pe,l(t) = 1 − (1−Pe,l(τ)) · e−Γl(t−τ), for t ∈ [τ, 2τ ]. (A.2)

Now we have to find Pe,h(0) and Pe,l(τ). In the steady state, the probability

function is continuous. Thus, there is only one value for Pe(t) at any time t. This

implies

Pe,h(0) = Pe,l(2τ), (A.3)

Pe,h(τ) = Pe,l(τ). (A.4)

131



132 Chapter A. Extracting tunnel rates from the response to a pulse train

-V

a

�

�h

0

�

�res

0

1

�l

VP

Pe (t) Pe, h(t)
Pe, l(t)

0 � 2� time

time

b

Figure A.1: (a) Pulse waveform applied to the gate, with the resulting level configu-
rations in the dot indicated. (b) The probability Pe(t) that the dot does not contain
an extra electron as a function of time, for Γ ∼ 1/τ .

Solving these equalities yields the values of Pe(t) at t = (0, 2τ) and t = τ :

Pe(0) = Pe(2τ) =
1 − e−Γlτ

1 − e−(Γh+Γl)τ
, (A.5)

Pe(τ) = e−Γhτ · Pe(0) =
e−Γhτ − e−(Γh+Γl)τ

1 − e−(Γh+Γl)τ
. (A.6)

With this, we know the value of Pe for the whole cycle. In Fig. A.1b, Pe is shown

as a function of time for Γh, Γl ∼ 1/τ .

A.2 Lock-in amplifier signal due to electron tun-

neling

The current through the QPC, IQPC, is directly related to the probability Pe:

∆IQPC = C ·Pe, where C denotes the maximum electron response (see Fig. 6.1c).

The lock-in amplifier multiplies IQPC with a sine function of frequency frep and

integrates the corresponding signal. This way, only fluctuations in IQPC at the

frequency frep lead to a nonzero output value. We now calculate the lock-in

amplifier signal (LAS) using the probability function Pe obtained in the previous
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section:

LAS =
C

2τ

∫ 2τ

0

Pe(t) · sin
(

tπ

τ

)
dt

=
C

2τ

∫ τ

0

Pe,h(t) · sin
(

tπ

τ

)
dt +

C

2τ

∫ 2τ

τ

Pe,l(t) · sin
(

tπ

τ

)
dt (A.7)

The first part of this integral is

C

2τ

∫ τ

0

Pe(0) · e−Γht · sin
(

tπ

τ

)
dt =

CPe(0)

2

π

Γ2
hτ

2 + π2

(
e−Γhτ + 1

)
(A.8)

The second part gives

C

2τ

∫ 2τ

τ

(
1 − (1−Pe(τ)) · e−Γl(t−τ)

) · sin
(

tπ

τ

)
dt

=
C (1−Pe(τ))

2

π

Γ2
l τ

2 + π2

(
e−Γlτ + 1

) − C

π
(A.9)

We see that the LAS is 0 for Γl, Γh � 1/τ , and is C/π for Γl, Γh � 1/τ .

For the case Γh =Γl =Γ,

Pe(0)=1−Pe(τ)=
1 − e−Γτ

1 − e−2Γτ
=

1

1 + e−Γτ
, (A.10)

and Eq. A.7 is reduced to the simple expression

LAS =
C

π

(
π2

Γ2τ 2 + π2
− 1

)
(A.11)

From this equation, we find that the LAS is maximally sensitivity to changes

in Γ when Γ = π/(
√

3τ) and LAS is 0.25 of the maximum response C/π. In

Fig. A.2a we plot the LAS as a function of the asymmetry in the tunnel rates

Γl/Γh, with Γh set to π/(
√

3τ).

A.3 Extracting tunnel rates from the lock-in sig-

nal

In Fig. A.2b the LAS is plotted as a function of Γ, with Γh =Γl =Γ. By comparing

the measured value of LAS for a certain τ to the values in this plot, one can

determine the tunnel rate. Furthermore, by increasing the pulse amplitude, an

excited state can be made to enter the pulse window. From the resulting change

in LAS, the tunnel rate for this extra level can be deduced. Finally, when an
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Figure A.2: (a) Lock-in amplifier response signal (LAS) to a voltage pulse train, as a
function of the tunnel rate asymmetry Γl/Γh. Here, Γh is fixed to π/(

√
3τ). (b) LAS

as a function of Γ, for Γh =Γl =Γ.

electron entering the excited state relaxes to the ground state in a time much

shorter than τ , it will tunnel out again with a rate corresponding to the ground

state. In this case the tunnel rates Γh and Γl will not be the same. As one now

decreases τ to a value much shorter than the relaxation time, this difference will

gradually disappear. Thus, from the dependence of the tunnel rate asymmetry

on τ , this relaxation time can be extracted.



Summary

Electron spins in semiconductor quantum dots

This thesis describes a series of experiments aimed at understanding and con-

trolling the behavior of the spin degree of freedom of single electrons, confined in

semiconductor quantum dots. This research work is motivated by the prospects

of using the electron spin as a quantum bit (qubit), the basic building block of

a quantum computer. Here, the envisioned basis states (logical 0 and 1) of the

qubit are the two possible orientations of the spin in a magnetic field: ‘spin-up’

(parallel to the field) and ‘spin-down’ (anti-parallel to the field). In this thesis,

a number of important steps towards the use of electron spins as qubits are re-

ported: the isolation of a single electron in a quantum dot, energy spectroscopy

of the electron spin states, development of a new technique to probe a nearly-

isolated quantum dot, ‘single-shot’ read-out of the electron spin orientation, and

increased understanding of the interaction of the electron spin with its environ-

ment.

A quantum dot can be thought of as a small ‘box’ filled with a controllable

number of electrons. This box is coupled via tunnel barriers to reservoirs, with

which electrons can be exchanged, and is coupled capacitively to one or more

gate electrodes that allow the number of electrons on the dot to be varied. Due

to the small dot size (typically ∼ 50 nm), comparable to the Fermi wavelength of

the electrons, it exhibits a discrete energy spectrum. The quantum dot devices

studied in this work are defined in a two-dimensional electron gas (2DEG) of

a GaAs/AlGaAs heterostructure, by applying negative voltages to metallic gate

electrodes fabricated on top of the heterostructure.

The electronic properties of a quantum dot are conventionally studied by

looking at the transport of electrons through the dot. A bias voltage is applied

over the device, and the resulting current flowing through it is measured. The

dependence of the current on bias voltage and on the voltage that is applied to

the surface gates provide detailed information on the energy level spectrum and

the coupling of the different states to the reservoirs.
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The basic ‘hardware’ for all the experiments is a small circuit that consists of

two coupled quantum dots, each flanked by a Quantum Point Contact (QPC). A

QPC is a narrow channel in the 2DEG, of which the conductance can be made

very sensitive to the electrostatic environment. By applying a bias voltage over

the constriction, and measuring the resulting current flowing through it, the QPC

is operated as an electrometer and allows the detection of changes in the number

of electrons on the nearby quantum dot.

Complete control over the number of electrons (down to zero) on each of the

two coupled dots is demonstrated, using both charge detection and transport

measurements. Even in the few-electron regime, the coupling between the two

dots as well as the coupling to the reservoirs remain fully tunable. By increasing

the bandwidth of the electrometer to about 40 kHz, single-electron tunneling on

and off the dot is observed in real time.

The spin states of a one- and a two-electron quantum dot are first investigated

using transport measurements. By applying a large magnetic field parallel to the

2DEG, the Zeeman energy splitting of a single electron is measured directly.

Furthermore, a lower bound on the spin relaxation time of 50 µs is found by

using fast voltage pulses. In the two-electron dot, both the spin-singlet ground

state as well as the Zeeman-split spin-triplet excited states are identified. The

measurements demonstrate that, in first order, a one-electron dot only allows

spin-up electrons to pass, whereas a two-electron dot transmits only electrons

with spin-down. Thus, a few-electron dot can be operated as an electrically

tunable, bipolar spin filter.

Then, a new technique is developed for extracting all relevant parameters of

the quantum dot using the QPC as an electrometer. The number of electrons on

the dot and the tunnel rate between the dot and the reservoir can be determined

even in the regime of very weak coupling of the dot to only one reservoir (this

regime is inaccessible to transport measurements). The excited states can be

identified by the changes they cause in the effective tunnel rate, allowing the

complete energy level spectrum to be obtained.

Two methods are presented for reading out the electron spin state on a quan-

tum dot, both relying on ‘spin-to-charge’ conversion. Here, the spin information

is first converted to charge information by making the number of electrons on the

dot dependent on the initial spin state. A subsequent fast measurement of the

number of electrons on the dot using the QPC thus reveals the spin state.

The first method for spin-to-charge conversion relies on a large energy differ-

ence between the spin states, induced by an applied magnetic field. The levels

are aligned such, that a spin-up electron is trapped on the dot, whereas a spin-

down electron has enough energy to escape. Using this technique, read-out of an
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individual electron spin is performed, with a single-shot measurement visibility

up to 65%.

Alternatively, spin-to-charge conversion can be induced by spin-dependent

tunnel rates. This method is applied to read out the two-electron spin state.

Here, tunneling from a triplet state is about twenty times as fast as tunneling

from a singlet state, resulting in a single-shot measurement visibility of more than

80%.

The read-out techniques also allow the spin relaxation times to be extracted.

Both for a single spin and for the two-electron spin states, the relaxation is found

to be very slow (relaxation times up to milliseconds). These long times, five orders

of magnitude longer than the typical orbital relaxation time for an electron in a

dot, indicate that the electron spin degree of freedom is well isolated from the

environment. A strong magnetic field dependence suggests that the spin-orbit

interaction is the dominant relaxation mechanism.

Finally, the progress on the ‘electron spin qubit’ proposal is reviewed, and

the important problems are identified and critically analyzed. A number of key

experiments are proposed for the demonstration of coherent control over the spin

state and the presence of entanglement.

Ronald Hanson

January 2005
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Samenvatting

Elektronenspins in halfgeleider quantum dots

Dit proefschrift beschrijft een reeks experimenten, die het doel hebben om

het gedrag van de spinvrijheidsgraad van enkele elektronen, opgesloten in een

halfgeleider quantum dot, te begrijpen en onder controle te krijgen. De motivatie

voor dit onderzoek is de mogelijke toepassing van de spin van een elektron als

quantum bit (of qubit), de elementaire bouwsteen van een quantum computer.

De beoogde basistoestanden van de qubit (de logische 0 en 1) komen overeen met

de twee mogelijke richtingen van de spin van een elektron in een magneetveld:

‘spin-omhoog’ (parallel aan het magneetveld) en ‘spin-omlaag’ (antiparallel aan

het magneetveld). In dit proefschrift wordt verslag gedaan van een aantal belang-

rijke stappen richting het gebruik van de spin van elektronen als qubits: opsluiting

van een enkel elektron in een quantum dot, energie spectroscopie van de spintoe-

standen van het elektron, de ontwikkeling van een nieuwe techniek waarmee een

bijna-gëısoleerde quantum dot kan worden onderzocht, uitlezing van de spintoe-

stand van een elektron in een enkele meting, en kennis over de interactie van de

spin van het elektron met de omgeving.

Een quantum dot kan worden beschouwd als een klein ‘doosje’ gevuld met

een regelbaar aantal elektronen. Dit doosje is via tunnel barrières gekoppeld

aan reservoirs, waarmee elektronen kunnen worden uitgewisseld, en het is capac-

itief gekoppeld aan één of meer ‘gate’ elektroden waarmee het elektronenaantal

op de dot gevarieerd kan worden. Vanwege de kleine afmetingen van de dot

(typisch ∼ 50 nm), vergelijkbaar met de Fermi golflengte van de elektronen, ver-

toont de dot een discreet energie spectrum. De in dit werk bestudeerde quantum

dots zijn gedefinieerd in een tweedimensionaal elektronengas (2DEG) van een

GaAs/AlGaAs heterostructuur, door negatieve spanningen aan te brengen op

metalen ‘gate’ elektroden bovenop de heterostructuur.

De conventionele manier om de elektronische eigenschappen van een quantum

dot te bestuderen is door te kijken naar het transport van elektronen door de dot.

Een spanningsverschil wordt aangelegd over de structuur, en de stroom die er als
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gevolg doorheen vloeit wordt gemeten. De afhankelijkheid van die stroom van het

aangelegde spanningsverschil en de spanning op de ‘gate’ elektroden geeft gede-

tailleerde informatie over het spectrum van energieniveaus en de tunnelkoppeling

naar de reservoirs.

De basis ‘hardware’ voor alle experimenten is een structuur bestaande uit

twee gekoppelde quantum dots, elk geflankeerd door een quantum puntcontact

(QPC). Een QPC is een nauw kanaaltje in het 2DEG, waarvan de geleiding

erg gevoelig gemaakt kan worden voor de elektrostatische omgeving. Door een

spanningsverschil aan te leggen over het kanaaltje, en de resulterende stroom die

er doorheen loopt te meten, kan de QPC worden gebruikt als een ladingsmeter en

kunnen veranderingen in het aantal elektronen op de vlakbij gelegen dot worden

gedetecteerd.

Volledige controle over het aantal elektronen (tot aan nul) op elk van de twee

gekoppelde dots is aangetoond, zowel met ladingsmetingen als met transport-

metingen. Zelfs met nog maar een paar elektronen op de dots blijven zowel de tun-

nelkoppeling tussen de dots als de tunnelkoppeling naar de reservoirs volledig in-

stelbaar. Met een verhoogde bandbreedte van de ladingsmeter (ongeveer 40 kHz)

is het tunnelen van een enkel elektron naar en van de dot geobserveerd in ‘real-

time’.

De spintoestanden in een één-elektron en een twee-elektron dot zijn eerst on-

derzocht met transportmetingen. In een sterk magneetveld, aangelegd in het vlak

van het 2DEG, is de Zeemanenergie van een enkel elektron op een directe manier

gemeten. Bovendien is voor de spinvervaltijd, welke aangeeft op welke tijdschaal

een ‘spin-omlaag’ toestand vervalt naar de grondtoestand ‘spin-omhoog’, een on-

dergrens van 50 microseconden gevonden. In een dot met twee elektronen zijn

zowel de spin-singlet grondtoestand als de door Zeemanenergie gesplitste spin-

triplet aangeslagen toestanden gëıdentificeerd. De metingen laten zien dat een

dot met één elektron alleen elektronen met ‘spin-omhoog’ doorlaat, terwijl een

dot met twee elektronen alleen elektronen met ‘spin-omlaag’ doorlaat. Derhalve

kan een dot met enkele elektronen gebruikt worden als een elektrisch regelbaar,

bipolair spinfilter.

Een nieuwe techniek is ontwikkeld waarmee alle relevante parameters van de

quantum dot te bepalen zijn. Het aantal elektronen op de dot en de tunnelfre-

quentie tussen de dot en het reservoir kunnen ermee worden bepaald, zelfs in

het regime waarin de dot zeer zwak gekoppeld is naar maar één reservoir, een

regime dat niet toegankelijk is voor conventionele transportexperimenten. De

aangeslagen toestanden kunnen worden gëıdentificeerd door de verandering die

ze veroorzaken in de effectieve tunnelfrequentie te meten, zodat het complete

energiespectrum kan worden verkregen.
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Twee methodes worden gepresenteerd waarmee de spintoestand op de quan-

tum dot kan worden uitgelezen, beiden gebruik makend van ‘spin-naar-lading

conversie’. Hierin wordt de spininformatie eerst omgezet naar ladingsinformatie,

door het aantal elektronen op de dot afhankelijk te maken van de initiële spin-

toestand. Vervolgens onthult een snelle meting van het aantal elektronen op de

dot met behulp van de QPC de spintoestand.

De eerste methode voor ‘spin-naar-lading conversie’ berust op een groot ver-

schil in energie tussen de spintoestanden als gevolg van een aangelegd mag-

neetveld. De niveaus van de spintoestanden worden zo gepositioneerd dat een

elektron vastzit op de dot als het ‘spin-omhoog’ heeft, terwijl een elektron de dot

kan verlaten als het ‘spin-omlaag’ heeft. Met deze techniek is het gelukt de spin-

richting van een enkel elektron uit te lezen, met een enkele-meting nauwkeurigheid

tot aan 65%.

De ‘spin-naar-ladings conversie’ kan op een andere manier worden gerealiseerd

met behulp van tunnelfrequenties die afhangen van de spintoestand. Deze meth-

ode is toegepast op de uitlezing van de spintoestand van twee elektronen. De

tunnelfrequentie van een spin-triplet is twintig maal zo hoog als die van een spin-

singlet, wat resulteert in een enkele-meting nauwkeurigheid boven de 80%.

Met deze uitleestechnieken kunnen ook de spinvervaltijden worden bepaald.

Zowel voor een enkele spin als voor de spintoestanden van twee elektronen is

een zeer langzaam verval gevonden (vervaltijden tot aan milliseconden). Deze

vervaltijden, vijf ordegroottes langer dan de typische baanvervaltijden van een

elektron in een dot, geven aan dat de spinvrijheidsgraad van een elektron goed

gëısoleerd is van de omgeving. De sterke magneetveldafhankelijkheid suggereert

dat spin-baan interactie het dominante vervalmechanisme is.

Tot slot is een overzicht gegeven van de vooruitgang op het ‘elektron spin

qubit’ gebied, en zijn de belangrijkste problemen gëıdentificeerd en kritisch bekeken.

Een aantal sleutelexperimenten is voorgesteld voor het aantonen van coherente

controle over de spintoestand en de aanwezigheid van verstrengelde toestanden.

Ronald Hanson

januari 2005
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